research

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

Abstract

We introduce synchronization strings as a novel way of efficiently dealing with synchronization errors, i.e., insertions and deletions. Synchronization errors are strictly more general and much harder to deal with than commonly considered half-errors, i.e., symbol corruptions and erasures. For every ϵ>0\epsilon >0, synchronization strings allow to index a sequence with an ϵ−O(1)\epsilon^{-O(1)} size alphabet such that one can efficiently transform kk synchronization errors into (1+ϵ)k(1+\epsilon)k half-errors. This powerful new technique has many applications. In this paper, we focus on designing insdel codes, i.e., error correcting block codes (ECCs) for insertion deletion channels. While ECCs for both half-errors and synchronization errors have been intensely studied, the later has largely resisted progress. Indeed, it took until 1999 for the first insdel codes with constant rate, constant distance, and constant alphabet size to be constructed by Schulman and Zuckerman. Insdel codes for asymptotically large or small noise rates were given in 2016 by Guruswami et al. but these codes are still polynomially far from the optimal rate-distance tradeoff. This makes the understanding of insdel codes up to this work equivalent to what was known for regular ECCs after Forney introduced concatenated codes in his doctoral thesis 50 years ago. A direct application of our synchronization strings based indexing method gives a simple black-box construction which transforms any ECC into an equally efficient insdel code with a slightly larger alphabet size. This instantly transfers much of the highly developed understanding for regular ECCs over large constant alphabets into the realm of insdel codes. Most notably, we obtain efficient insdel codes which get arbitrarily close to the optimal rate-distance tradeoff given by the Singleton bound for the complete noise spectrum

    Similar works

    Full text

    thumbnail-image

    Available Versions