194 research outputs found
Umgang mit dem Prostatakarzinom bei über 75-jährigen Männern: Aktiv oder passiv?
Zusammenfassung: Die steigende Lebenserwartung und die zunehmende Zahl älterer Menschen in der Bevölkerung westlicher Industrienationen rücken das Prostatakarzinom (PCa) im höheren Lebensalter zunehmend in den Fokus des Interesses. Einigkeit besteht darin, dass >75-jährige Männer von einem PSA-Screening nicht profitieren. Ein höheres Alter allein sollte jedoch weder die Diagnostik noch die Behandlung eines Tumorleidens generell ausschließen. Zu berücksichtigen ist aber gerade beim Prostatakarzinom das Risiko von Überdiagnostik und Übertherapie. Die Mehrzahl der älteren Männer leidet an einer Vielzahl von Begleiterkrankungen, welche die Lebenserwartung einschränken, und das konkurrierende Mortalitätsrisiko übersteigt das der Tumorerkrankung um ein Vielfaches. Der behandelnde Urologe und der betroffene Patient sollten deshalb mögliche Auswirkungen einer Diagnosestellung und Therapie auf die Lebensqualität berücksichtigen. Alter, bestehende Komorbiditäten und die individuelle kognitive und körperliche Leistungsfähigkeit stellen neben spezifischen Tumorparametern gute Kriterien für eine individualisierte Behandlungssteuerung dar. Bei gesunden, aktiven >75-jährigen Männern mit "High-risk-PCa-Kriterien" und Patienten mit einer PSA-Verdoppelungszeit < 12Monate sollte eine Therapie in Erwägung gezogen werden. Alle anderen Patienten in diesem Alter profitieren vermutlich nicht von einer Behandlung des PC
Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field
Magnetic thermo-responsive hydrogels are a new class of materials that have recently attracted interest in biomedicine due to their ability to change phase upon magnetic stimulation. They have been used for drug release, magnetic hyperthermia treatment, and can potentially be engineered as stimuli-responsive substrates for cell mechanobiology. In this regard, we propose a series of magnetic thermo-responsive nanocomposite substrates that undergo cyclical swelling and de-swelling phases when actuated by an alternating magnetic field in aqueous environment. The synthetized substrates are obtained with a facile and reproducible method from poly-N- isopropylacrylamide and superparamagnetic iron oxide nanoparticles. Their conformation and the temperature-related, magnetic, and biological behaviors were characterized via scanning electron microscopy, swelling ratio analysis, vibrating sample magnetometry, alternating magnetic field stimulation and indirect viability assays. The nanocomposites showed no cytotoxicity with fibroblast cells, and exhibited swelling/de-swelling behavior near physiological temperatures (around 34 °C). Therefore these magnetic thermo-responsive hydrogels are promising materials as stimuli-responsive substrates allowing the study of cell-behavior by changing the hydrogel properties in situ
Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain
Recently a metallic state was discovered at the interface between insulating
oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional
electron gas (2DEG) have attracted significant interest due to its potential
applications in nanoelectronics. Control over this carrier density and mobility
of the 2DEG is essential for applications of these novel systems, and may be
achieved by epitaxial strain. However, despite the rich nature of strain
effects on oxide materials properties, such as ferroelectricity, magnetism, and
superconductivity, the relationship between the strain and electrical
properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely
unexplored. Here, we use different lattice constant single crystal substrates
to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial
strain. We have found that tensile strained SrTiO3 destroys the conducting
2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier
concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface.
We have also found that the critical LaAlO3 overlayer thickness for 2DEG
formation increases with SrTiO3 compressive strain. Our first-principles
calculations suggest that a strain-induced electric polarization in the SrTiO3
layer is responsible for this behavior. It is directed away from the interface
and hence creates a negative polarization charge opposing that of the polar
LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer,
and reduces carrier concentration above the critical thickness, in agreement
with our experimental results. Our findings suggest that epitaxial strain can
be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface
Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure
We analyze both experimentally (where possible) and theoretically from
first-principles the dielectric tensor components and crystal structure of five
classes of Pbnm perovskites. All of these materials are believed to be stable
on silicon and are therefore promising candidates for high-K dielectrics. We
also analyze the structure of these materials with various simple models,
decompose the lattice contribution to the dielectric tensor into force constant
matrix eigenmode contributions, explore a peculiar correlation between
structural and dielectric anisotropies in these compounds and give phonon
frequencies and infrared activities of those modes that are infrared-active. We
find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising
candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information:
http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or
http://www.physics.rutgers.edu/~sinisa/highk/supp.pd
Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films
Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser
deposition, of thicknesses down to 40 nm, were studied using infrared
transmission and reflection spectroscopy. The complex dielectric responses of
polar phonon modes, particularly ferroelectric soft mode, in the films were
determined quantitatively. The compressed epitaxial STO films on (100)
La0.18Sr0.82Al0.59-Ta0.41O3 substrates (strain 0.9%) show strongly stiffened
phonon responses, whereas the soft mode in polycrystalline film on (0001)
sapphire substrate shows a strong broadening due to grain boundaries and/or
other inhomogeneities and defects. The stiffened soft mode is responsible for a
much lower static permittivity in the plane of the compressed film than in the
bulk samples.Comment: 11 page
Built-in and induced polarization across LaAlO/SrTiO heterojunctions
Ionic crystals terminated at oppositely charged polar surfaces are inherently
unstable and expected to undergo surface reconstructions to maintain
electrostatic stability. Essentially, an electric field that arises between
oppositely charged atomic planes gives rise to a built-in potential that
diverges with thickness. In ultra thin film form however the polar crystals are
expected to remain stable without necessitating surface reconstructions, yet
the built-in potential has eluded observation. Here we present evidence of a
built-in potential across polar \lao ~thin films grown on \sto ~substrates, a
system well known for the electron gas that forms at the interface. By
performing electron tunneling measurements between the electron gas and a
metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93
meV/\AA. Additionally, capacitance measurements reveal the presence of an
induced dipole moment near the interface in \sto, illuminating a unique
property of \sto ~substrates. We forsee use of the ionic built-in potential as
an additional tuning parameter in both existing and novel device architectures,
especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201
Structural and dielectric properties of SrTiO from first principles
We have investigated the structural and dielectric properties of
SrTiO,the first member of the SrTiO
Ruddlesden-Popper series, within density functional theory. Motivated by recent
work in which thin films of SrTiO were grown by molecular beam
epitaxy (MBE) on SrTiO substrates, the in-plane lattice parameter was
fixed to the theoretically optimized lattice constant of cubic SrTiO
(n=), while the out-of-plane lattice parameter and the internal
structural parameters were relaxed. The fully relaxed structure was also
investigated. Density functional perturbation theory was used to calculate the
zone-center phonon frequencies, Born effective charges, and the electronic
dielectric permittivity tensor. A detailed study of the contribution of
individual infrared-active modes to the static dielectric permittivity tensor
was performed. The calculated Raman and infrared phonon frequencies were found
to be in agreement with experiment where available. Comparisons of the
calculated static dielectric permittivity with experiments on both ceramic
powders and epitaxial thin films are discussed.Comment: 11 pages, 1 figure, 8 tables, submitted to Phys. Rev.
Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long-term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree-level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, and drought-related factors and their interactions driving the tree-level resilience to extreme droughts. We used a tree-ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2, 800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid-elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree-level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long-term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation
Entanglement swapping between electromagnetic field modes and matter qubits
Scalable quantum networks require the capability to create, store and
distribute entanglement among distant nodes (atoms, trapped ions, charge and
spin qubits built on quantum dots, etc.) by means of photonic channels. We show
how the entanglement between qubits and electromagnetic field modes allows
generation of entangled states of remotely located qubits. We present
analytical calculations of linear entropy and the density matrix for the
entangled qubits for the system described by the Jaynes-Cummings model. We also
discuss the influence of decoherence. The presented scheme is able to drive an
initially separable state of two qubits into an highly entangled state suitable
for quantum information processing
Determinants of legacy effects in pine trees – implications from an irrigation-stop experiment
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree’s responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions
- …