9 research outputs found

    Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development

    Get PDF
    Variation in content of organic acids and soluble sugars, and in physical characteristics was evaluated in apricot (P. armeniaca L. cv. Harcot), plumcot (plum-apricot hybrid, P. salicina ⅹ P. armeniaca L. cv. Harmony), plum (P. salicina Lindl. cv. Formosa), and peach (P. persica L. Batsch cv. Jinmi). The content of organic acids and sugars, as well as parameters of fruit quality (weight, dimensions, firmness, total soluble solids, and total acidity) in Prunus fruits during fruit development were determined. Organic acids, including oxalic acid, quinic acid, malic acid, shikimic acid, citric acid, and quinic acid, sugars, including sucrose, fructose, glucose, and sugar alcohol (sorbitol), were identified and quantified using HPLC. Organic acid mostly increased during the early stages of fruit growth (30 - 60 days after full bloom) and decreased until fruits were fully ripened. In general, plum was the highest in most organic acids compared with the other fruits, while apricot contained the lowest acid content except for citric acid. Sucrose, fructose, and glucose content increased with fruit development, unlike content of sorbitol. Plumcot contained the highest fructose, and peach showed the maximum content of sucrose at full maturation stages. Total soluble solids averaged 17.5, 14.8, 11.9, and 10.6 ºBrix in apricot, plumcot, plum, and peach, respectively, whereas total acidity was 0.9, 1.4, 0.5, and 0.3% in four Prunus cultivars at ripened stages. Shikimic acid was significantly correlated with oxalic acid in apricot, plumcot, and plum, but not in peach. Fructose and glucose were highly correlated in plumcot, plum, and peach.

    Functional Principles of Morphological and Anatomical Structures in Pinecones

    No full text
    In order to better understand the functions of plants, it is important to analyze the internal structure of plants with a complex structure, as well as to efficiently monitor the morphology of plants altered by their external environment. This anatomical study investigated structural characteristics of pinecones to provide detailed descriptions of morphological specifications of complex cone scales. We analyzed cross-sectional image data and internal movement patterns in the opening and closing motions of pinecones, which change according to the moisture content of its external environment. It is possible to propose a scientific system for the deformation of complex pinecone for the variable structures due to changes in relative humidity, as well as the application of technology. This study provided a functional principle for a multidisciplinary approach by exploring the morphological properties and anatomical structures of pinecones. Therefore, the results suggest a potential application for use in energy-efficient materials by incorporating hygroscopic principles into engineering technology and also providing basic data for biomimicry research

    Exploring the Mechanisms of Humidity Responsiveness in Plants and Their Potential Applications

    No full text
    Plant structures exhibit complex behaviors through unique shape changes and movements closely related to moisture factors. When the plants absorb moisture, their inside has a higher tension than their outside, so the entire structure is folded to closure or opened. The principle and property could be applied to bio-inspired technology, which is the process of fusion mimicking the structure, function, metabolism, mechanism, and ecological system of those creatures adapted to their environments. In this study, we analyzed the functions and physical characteristics of environment-sensing plants to demonstrate the principles of plants with opening-and-closing and curling-and-uncurling mechanisms and to better understand these behavior principles. From a biological and ecological viewpoint, the target sensory and cognitive plants that respond to external humidity and vibration were found to undergo structural changes in the size of the xylem and the degree of adhesion of the leaf and stem, as well as the opening, closing, and curling of the external shapes of the plants. The phenomenon of external form changes based on the microstructural characteristics of plants showed a promising direction for addressing issues in existing technology, such as non-powered operation. Therefore, in this study, we presented a biomimetic humidification model that was biocompatible and reversible. Pinecone samples with the applied opening-and-closing mechanism were to apply these biological properties to biomimetics. The results provide biomimetic knowledge for understanding the functions of biological and ecological features underlying the morphological changes in humidity-sensing plants and plant bioacoustics. These bio-inspired plant resources could provide sustainable new-growth power and valuable scientific information for advancing the research and technological development of biomimetics

    Magnetoresponsive Artificial Cilia Self-Assembled with Magnetic Micro/Nanoparticles

    No full text
    Biological cilia have exquisitely organized dynamic ultrafine structures with submicron diameters and exceptional aspect ratios, which are self-assembled with ciliary proteins. However, the construction of artificial cilia with size and dynamic functions comparable to biological cilia remains highly challenging. Here, we propose a self-assembly technique that generates magnetoresponsive artificial cilia with a highly ordered 3D structural arrangement using vapor-phase magnetic particles of varying sizes and shapes. We demonstrate that both monodispersed Fe3O4 nanoparticles and Fe microparticles can be assembled layer-by-layer vertically in patterned magnetic fields, generating both "nanoscale" or "microscale" artificial cilia, respectively. The resulting cilia display several structural features, such as diameters of single particle resolution, controllable diameters and lengths spanning from nanometers to micrometers, and accurate positioning. We further demonstrate that both the magnetic nanocilia and microcilia can dynamically and immediately actuate in response to modulated magnetic fields while providing different stroke ranges and actuation torques. Our strategy provides new possibilities for constructing artificial nano-and microcilia with controlled 3D morphology and dynamic field responsiveness using magnetic particles of varied sizes and shapes

    Surface Coating with Hyaluronic Acid-Gelatin-Crosslinked Hydrogel on Gelatin-Conjugated Poly(dimethylsiloxane) for Implantable Medical Device-Induced Fibrosis

    No full text
    Polydimethylsiloxane (PDMS) is a biocompatible polymer that has been applied in many fields. However, the surface hydrophobicity of PDMS can limit successful implementation, and this must be reduced by surface modification to improve biocompatibility. In this study, we modified the PDMS surface with a hydrogel and investigated the effect of this on hydrophilicity, bacterial adhesion, cell viability, immune response, and biocompatibility of PDMS. Hydrogels were created from hyaluronic acid and gelatin using a Schiff-base reaction. The PDMS surface and hydrogel were characterized using nuclear magnetic resonance, X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, and scanning electron microscopy. The hydrophilicity of the surface was confirmed via a decrease in the water contact angle. Bacterial anti-adhesion was demonstrated for Pseudomonas aeruginosa, Ralstonia pickettii, and Staphylococcus epidermidis, and viability and improved distribution of human-derived adipose stem cells were also confirmed. Decreased capsular tissue responses were observed in vivo with looser collagen distribution and reduced cytokine expression on the hydrogel-coated surface. Hydrogel coating on treated PDMS is a promising method to improve the surface hydrophilicity and biocompatibility for surface modification of biomedical applications

    Advances in Lower Hybrid Current Drive for TOKAMAK long pulse operation: Technology & Physics

    No full text
    The paper gives a picture of the present status and understanding of technology and physics of Lower Hybrid Current Drive for long pulse operation in tokamaks, including the development of continuous wave (CW) high power klystrons, and its evolutions towards ITER. 3.7GH/ 700kW CW klystrons produced in series by Thales Electron Devices are now in operation on Tore Supra. First series of eight klystrons delivered more than 4MW to sustain non-inductive plasmas during 50 s. Moreover, a prototype of 500kW CW klystron operating at 5GHz developed for KSTAR by Toshiba Electron Tubes and Devices, and foreseen for ITER, is able to produce RF output powers of 300kW/ 800 s and 450kW/ 20 s on matched load. The situation on wave coupling and antennas is reported, with the latest Tore Supra results of the new CW Passive-Active Multi-junction (PAM) launcher: the antenna concept foreseen for ITER. First experiments with the PAM antenna in Tore Supra have provided extremely encouraging results in terms of power handling and coupling. Relevant ITER power density of ~25MW/m2 (2.7MW of power injected into the plasma) has been maintained over ~80 s. In addition, LH power of 2.7MW has been coupled at a plasma-antenna distance of 10 cm.110Yscopusothe
    corecore