4 research outputs found
Molecular Taxonomy of a Phantom Midge Species (Chaoborus flavicans) in Korea
The larvae of Chaoborus are widely distributed in lakes, ponds, and reservoirs. These omnivorous Chaoborus larvae are crucial predators and play a role in structuring zooplankton communities, especially for small-sized prey. Larvae of Chaoborus are commonly known to produce predator-induced polyphenism in Daphnia sp. Nevertheless, their taxonomy and molecular phylogeny are very poorly understood. As a fundamental study for understanding the role of Chaoborus in predator-prey interactions in a freshwater ecosystem, the molecular identification and phylogenetic relationship of Chaoborus were analyzed in this study. A molecular comparison based on partial mitochondrial cytochrome oxidase I (COI) between species in Chaoborus was carried out for the identification of Chaoborus larvae collected from 2 localities in Korea. According to the results, the Chaoborus species examined here was identified as C. flavicans, which is a lake-dwelling species. Furthermore, partial mitochondrial genome including COI, COII, ATP6, ATP8, COIII, and ND3 were also newly sequenced from the species and concatenated 5 gene sequences excluding ATP8 with another 9 dipteran species were compared to examine phylogenetic relationships of C. flavicans. The results suggested that Chaoborus was more related to the Ceratopogonidae than to the Culicidae. Further analysis based on complete mitochondrial DNA sequences and nuclear gene sequences will provide a more robust validation of the phylogenetic relationships of Chaoborus within dipteran lineages
Comparative Transcriptome Analysis for Understanding Predator-Induced Polyphenism in the Water Flea Daphnia pulex
The crustacean Daphnia pulex is one of the best model organisms for studying inducible defense mechanisms due to their inducible morphology in response to the predator Chaoborus larvae. In this study, multiple developmental stages of D. pulex were exposed to C. flavicans larvae and transcriptome profiles of samples from late embryo to fifth instar were sequenced by the RNA-seq technique to investigate the genetic background underlying inducible defenses. In comparison, differentially expressed genes between defensive and normal morphs were identified, including 908 genes in late embryo, 1383 genes in the first-third (1–3) instar, and 1042 genes in fourth-fifth (4–5) instar. Gene ontology enrichment analysis showed that structural constituents of the cuticle and structural molecule activity genes were prominent up-regulated genes in late embryos. Down-regulated genes in late embryos and 1–3 instar comprised metabolic process, hydrolase activity, and peptidase activity gene classes. Pathway analysis indicated that small molecule neurotransmitter pathways were potentially involved in the development of inducible defenses. The characterization of genes and pathways in multiple developmental stages can improve our understanding of inducible defense responses of D. pulex to predation at the molecular level
Enhancement of Wound Healing Efficacy by Increasing the Stability and Skin-Penetrating Property of bFGF Using 30Kc19 alpha-Based Fusion Protein
The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19 alpha is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19 alpha to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19 alpha to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19 alpha -bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19 alpha can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19 alpha -bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19 alpha improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.Y