53 research outputs found

    The slow release of BMP-7 at a low dose accelerates dental implant healing in an osteopenic environment.

    Get PDF
    The aim of the present study was to investigate in vivo whether bone morphogenetic protein-7 (BMP-7) was able to promote and accelerate dental implant healing at a low dose in an osteopenic environment by using a delayed drug-release system. Skeletally mature Chinese goats, having physiologically osteopenic (osteoporotic-like) facial bones, served as an animal model. Dental implants were provided with a delayed-release drug-delivery system and BMP-7 was applied at three different dosages. The implants, inserted into healed extraction sockets, were removed 1, 2 and 3 weeks after surgery. Quantification of osseointegration and formation of new bone in the peri- implant space were measured histomorphometrically. Data revealed no evidence of any adverse drug effect at or near the implantation sites. After the first postoperative week, bone neoformation was minimal; after the second week, peri-implant bone formation appeared, particularly in the groups with low dosages of BMP-7. After 3 weeks, new-bone volume was the largest in the group with the lowest (near-physiological) dosage of BMP-7, also showing the highest efficacy of BMP-7. Other dosage or release modes were found to be significantly less effective. BMP-7 was highly efficacious in promoting and accelerating bone formation in the peri-implant space in a hostile osteopenic environment if released by a slow-mode mechanism over time at near physiological activities. Therefore, biological functionalisation of dental implants by a high-power osteogenic factor may improve their healing success in hostile bony environments (osteopenia, osteoporosis, bone atrophy etc.)

    The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death

    Get PDF
    BACKGROUND: Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance. PRINCIPLE FINDINGS: We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism. CONCLUSIONS: This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.Davide Bulgarelli, Chiara Biselli, Nicholas C. Collins, Gabriella Consonni, Antonio M. Stanca, Paul Schulze-Lefert and Giampiero Val
    • …
    corecore