74 research outputs found

    Functional Properties and Molecular Architecture of Leukotriene A4 Hydrolase, a Pivotal Catalyst of Chemotactic Leukotriene Formation

    Get PDF
    The leukotrienes are a family of lipid mediators involved in inflammation and allergy. Leukotriene B4 is a classical chemoattractant, which triggers adherence and aggregation of leukocytes to the endothelium at only nM concentrations. In addition, leukotriene B4 modulates immune responses, participates in the host defense against infections, and is a key mediator of PAF-induced lethal shock. Because of these powerful biological effects, leukotriene B4 is implicated in a variety of acute and chronic inflammatory diseases, e.g., nephritis, arthritis, dermatitis, and chronic obstructive pulmonary disease. The final step in the biosynthesis of leukotriene B4 is catalyzed by leukotriene A4 hydrolase, a unique bifunctional zinc metalloenzyme with an anion-dependent aminopeptidase activity. Here we describe the most recent developments regarding our understanding of the function and molecular architecture of leukotriene A4 hydrolase

    GeneRegionScan: a Bioconductor package for probe-level analysis of specific, small regions of the genome

    Get PDF
    Summary: Whole-genome microarrays allow us to interrogate the entire transcriptome of a cell. Affymetrix microarrays are constructed using several probes that match to different regions of a gene and a summarization step reduces this complexity into a single value, representing the expression level of the gene or the expression level of an exon in the case of exon arrays. However, this simplification eliminates information that might be useful when focusing on specific genes of interest. To address these limitations, we present a software package for the R platform that allows detailed analysis of expression at the probe level. The package matches the probe sequences against a target gene sequence (either mRNA or DNA) and shows the expression levels of each probe along the gene. It also features functions to fit a linear regression based on several genetic models that enables study of the relationship between gene expression and genotype

    Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    Get PDF
    Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2) (PGE(2)). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas

    Structures of Leukotriene Biosynthetic Enzymes and Development of New Therapeutics

    No full text
    Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system. In activated cells, these enzymes traffic and assemble at the endoplasmic and perinuclear membrane, together comprising a biosynthetic complex. Here we describe recent advances in our molecular understanding of the protein components of the leukotriene-synthesizing enzyme machinery and also briefly touch upon the leukotriene receptors. Moreover, we discuss emerging opportunities for pharmacological intervention and development of new therapeutics. Expected final online publication date for the , Volume 63 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates

    Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke

    No full text
    Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.Peer reviewe

    Saccharomyces cerevisiae

    No full text

    Capturing LTA 4

    No full text
    • …
    corecore