3,597 research outputs found
Single Top Results by ATLAS and CMS
Electroweak production of top quarks, the so-called single top production, is
interesting both in the context of measurements of the Standard Model of
Particle Physics as well as searches for new phenomena beyond that. Analyses
based on data taken in 2010 and 2011 by the ATLAS and CMS collaborations at a
centre-of-mass energy of 7 TeV at the LHC proton-proton collider will be
presented. Different production channels, including t-channel, s-channel, and
associated W boson production, have been addressed using datasets of up to 2.1
fb^-1. A first search for Flavour Changing Neutral Currents has been performed
as well.Comment: Presented at the 2011 Hadron Collider Physics symposium (HCP-2011),
Paris, France, November 14-18 2011, 4 pages, 8 figure
Digital mapping of mountain snowcover under European conditions
The author has identified the following significant results. A method for monitoring the snow cover in high mountain terrain such as the Swiss Alps includes the rapid classification of multitemporal data for small watersheds with very high accuracy. In addition to LANDSAT channels 4,5,6 and 7 an artificial channel was created containing the average altitude information of each pixel and allowing a subdivision of the watershed in accordance to the requirements of the runoff model. Even in very small watersheds of about 40 sq km the results achieved from LANDSAT data are at least as accurate as the ones gained from measurements of orthophotographs
Snow survey and vegetation growth in the Swiss Alps
The author has identified the following significant results. Analog processing of S190A and B color and infrared color transparencies showed that it is possible to evaluate the courses of the temporary snow line and the upper limit of vegetation growth over large areas. By transferring the results from S190A onto a topo-map 1:200,000, an accuracy of + or - 50 m could be achieved. With S190B transferred onto a map 1:100,000, an accuracy of + or - 20 m was reached. Digital processing of S192 multispectral data allowed a separation of snow and clouds by combining the information from channels 9, 15, and 18
Natural Resources Inventory and Land Evaluation in Switzerland
The author has identified the following significant results. A system was developed to operationally map and measure the areal extent of various land use categories for updating existing and producing new and actual thematic maps showing the latest state of rural and urban landscapes and its changes. The processing system includes: (1) preprocessing steps for radiometric and geometric corrections; (2) classification of the data by a multivariate procedure, using a stepwise linear discriminant analysis based on carefully selected training cells; and (3) output in form of color maps by printing black and white theme overlays of a selected scale with photomation system and its coloring and combination into a color composite
Executive summary: Benefit-cost evaluation of an intra-regional air service in the Bay Area and a technology assessment of transportation system investments
The benefits and costs that would result from an intra-regional air service operation in the San Francisco Bay area were determined by utilizing an iterative statistical decision model to evaluate combinations of commuter airport sites and surface transportation facilities in conjunction with service by a given commuter aircraft type in light of area regional growth alternatives and peak and off-peak regional travel patterns. The model evaluates such transportation option with respect to criteria of airline profitability, public acceptance, and public and private non-user costs. In so doing, it incorporates information on modal split, peak and off-peak use of the air commuter fleet, terminal and airport costs, development costs and uses of land in proximity to the airport sites, regional population shifts, and induced zonal shifts in travel demand. The model is multimodal in its analytic capability, and performs exhaustive sensitivity analysis
Depth Super-Resolution Meets Uncalibrated Photometric Stereo
A novel depth super-resolution approach for RGB-D sensors is presented. It
disambiguates depth super-resolution through high-resolution photometric clues
and, symmetrically, it disambiguates uncalibrated photometric stereo through
low-resolution depth cues. To this end, an RGB-D sequence is acquired from the
same viewing angle, while illuminating the scene from various uncalibrated
directions. This sequence is handled by a variational framework which fits
high-resolution shape and reflectance, as well as lighting, to both the
low-resolution depth measurements and the high-resolution RGB ones. The key
novelty consists in a new PDE-based photometric stereo regularizer which
implicitly ensures surface regularity. This allows to carry out depth
super-resolution in a purely data-driven manner, without the need for any
ad-hoc prior or material calibration. Real-world experiments are carried out
using an out-of-the-box RGB-D sensor and a hand-held LED light source.Comment: International Conference on Computer Vision (ICCV) Workshop, 201
- …