71 research outputs found

    The Effect of Competitive Advantage and Human Advantage on Industrial Competitive Strategy (Case Study: Smis in Gorontalo Province)

    Full text link
    Small and Medium Industries (SMIs) have a strategic role in the Indonesian economy, as they earn 61.9 percent of the foreign exchange which goes to make up the nation\u27s Gross Domestic Product, and nationally they are able to absorb 97 percent of the workforce. The Global Competitiveness Report also notes that SMIs serve as the business units that affect every nation\u27s competitiveness. Considering this strategic role, the selection of a competitive strategy for these SMIs is absolutely necessary. Through an in-depth literature review, this study aims to explore what variables influence the competitive strategy of industries, particularly the SMIs. By using a Systematic Literature Review (SLR) with a total of 31 main literature (articles, papers and books), this study has found two dominant factors that influence industrial competitive strategy: Competitive advantage and human advantage, which are subsequently developed into six independent variables (construct variables), i.e. cost, delivery, product quality, product variety, know-how and innovativeness, with a total of 44 indicators. The results of measurements of the sample of SMIs in Gorontalo Province, using Structural Equation Modeling, found that both competitive advantage and human advantage jointly influence 40.2 percent of the industrial competitive strategies. These results indicate that competitive strategies, such as creating products with unique features, on-time delivery, flexibility in production, and employee involvement in the innovations, are indispensable to SMIs in order for them to produce quality products and be able to maintain their advantage

    Predictive performance of the new race-free Chronic Kidney Disease Epidemiology Collaboration equations for kidney outcome in Korean patients with chronic kidney disease

    Get PDF
    Background The new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations without a race coefficient have gained recognition across the United States. We aimed to test whether these new equations performed well in Korean patients with chronic kidney disease (CKD). Methods This study included 2,149 patients with CKD G1–G5 without kidney replacement therapy from the Korean Cohort Study for Outcome in Patients with CKD (KNOW-CKD). The estimated glomerular filtration rate (eGFR) was calculated using the new CKD-EPI equations with serum creatinine and cystatin C. The primary outcome was 5-year risk of kidney failure with replacement therapy (KFRT). Results When we adopted the new creatinine equation [eGFRcr (NEW)], 81 patients (23.1%) with CKD G3a based on the current creatinine equation (eGFRcr) were reclassified as CKD G2. Accordingly, the number of patients with eGFR of <60 mL/min/1.73 m2 decreased from 1,393 (64.8%) to 1,312 (61.1%). The time-dependent area under the receiver operating characteristic curve for 5-year KFRT risk was comparable between the eGFRcr (NEW) (0.941; 95% confidence interval [CI], 0.922–0.960) and eGFRcr (0.941; 95% CI, 0.922–0.961). The eGFRcr (NEW) showed slightly better discrimination and reclassification than the eGFRcr. However, the new creatinine and cystatin C equation [eGFRcr-cys (NEW)] performed similarly to the current creatinine and cystatin C equation. Furthermore, eGFRcr-cys (NEW) did not show better performance for KFRT risk than eGFRcr (NEW). Conclusion Both the current and the new CKD-EPI equations showed excellent predictive performance for 5-year KFRT risk in Korean patients with CKD. These new equations need to be further tested for other clinical outcomes in Koreans

    Endoscopic Vacuum Therapy in Patients with Transmural Defects of the Upper Gastrointestinal Tract: A Systematic Review with Meta-Analysis

    No full text
    A transmural defect of the upper gastrointestinal (UGI) tract is a life-threatening condition associated with high morbidity and mortality. Recently, endoscopic vacuum therapy (EVT) was used for managing UGI defects and showed promising results. We conducted a systematic review and meta-analysis to synthesize evidence on the efficacy of EVT in patients with transmural defects of the UGI tract. We searched the PubMed, Cochrane Library, and Embase databases for publications on the effect of EVT on successful closure, mortality, complications, and post-EVT strictures. Methodological quality was assessed using the Newcastle–Ottawa quality assessment scale. This meta-analysis included 29 studies involving 498 participants. The pooled estimate rate of successful closure with EVT was 0.85 (95% confidence interval [CI]: 0.81–0.88). The pooled estimate rates for mortality, complications, and post-EVT strictures were 0.11, 0.10, and 0.14, respectively. According to the etiology of the transmural defect (perforation vs. leak and fistula), no significant difference was observed in successful closure (odds ratio [OR]: 1.45, 95% CI: 0.45–4.67, p = 0.53), mortality (OR: 0.77, 95% CI: 0.24–2.46, p = 0.66), complications (OR: 0.94, 95% CI: 0.17–5.15, p = 0.94), or post-EVT stricture rates (OR: 0.70, 95% CI: 0.12–4.24, p = 0.70). The successful closure rate was significantly higher with EVT than with self-expanding metal stent (SEMS) placement (OR: 3.14, 95% CI: 1.23–7.98, p = 0.02). EVT is an effective and safe treatment for leaks and fistulae, as well as for perforations in the UGI. Moreover, EVT seems to be a better treatment option than SEMS placement for UGI defects

    Comparative Analysis between Blood Test and Breath Analysis Using Sensors Array for Diabetic Patients

    No full text
    Acetone was one of the volatile organic compounds present in respiration, and acetone contained in the exhalation of diabetic patients was found to be a combustion metabolite of body fat. [...

    Investigation of a Haptic Actuator Made with Magneto-Rheological Fluids for Haptic Shoes Applications

    No full text
    This paper presents a magneto-rheological (MR) actuator that can be easily inserted into haptic shoes and can haptically simulate the material properties of the ground. To increase the resistive force of the proposed actuator, we designed a movable piston having multiple operation modes of MR fluids. Further, the design of a solenoid coil was optimized to maximize the resistive force in a limited-sized MR actuator. Simulations were conducted to predict the actuation performance and to show that the magnetic flux flows well by forming a closed loop in the proposed actuator. The quantitative evaluation of the proposed actuator was investigated by measuring the resistive force as a function of the input current and its pressed depth. From the result, we found that the proposed actuator can create over 600 N by adjusting the input current

    Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    No full text
    The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects

    Biphasic Calcium Phosphate (BCP)-Immobilized Porous Poly (d,l-Lactic-co-Glycolic Acid) Microspheres Enhance Osteogenic Activities of Osteoblasts

    No full text
    The purpose of this study was to evaluate the potential of porous poly (d,l-lactic-co-glycolic acid) (PLGA) microspheres (PMSs) immobilized on biphasic calcium phosphate nanoparticles (BCP NPs) (BCP-IM-PMSs) to enhance osteogenic activity. PMSs were fabricated using a fluidic device, and their surfaces were modified with l-lysine (aminated-PMSs), whereas the BCP NPs were modified with heparin–dopamine (Hep-DOPA) to obtain heparinized–BCP (Hep-BCP) NPs. BCP-IM-PMSs were fabricated via electrostatic interactions between the Hep-BCP NPs and aminated-PMSs. The fabricated BCP-IM-PMSs showed an interconnected pore structure. In vitro studies showed that MG-63 cells cultured on BCP-IM-PMSs had increased alkaline phosphatase activity, calcium content, and mRNA expression of osteocalcin (OCN) and osteopontin (OPN) compared with cells cultured on PMSs. These data suggest that BCP NP-immobilized PMSs have the potential to enhance osteogenic activity

    Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by the γ-Ray Irradiation Technique

    No full text
    The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL) fibers modified using the γ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc) was grafted onto the PCL fibers by the γ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL). PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP) activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells
    • …
    corecore