8 research outputs found

    Innovative Distribution Priorities for the Medical Devices Industry in the Fourth Industrial Revolution

    No full text
    Purpose This study aimed to set priorities for improving the medical device distribution structure and to suggest an innovative improvement plan for the distribution structure using the analytic hierarchy process (AHP) method, focusing on stakeholders in the medical device industry. Methods This study conducted a survey with 35 specialists using the AHP method, which is a multiple-criteria decisionmaking methodology, in order to set priorities for improvement plans to address the problems faced by the medical device distribution structure. Results The AHP analysis showed that supply stability was the most important factor, followed by greater transparency, efficiency, smart supply, and cost reduction. Conclusions It is necessary to establish a stable supply system and manage crises through supply stability, as well as to provide opportunities for fair trade through greater transparency. As steps towards those goals, we propose establishing a unique device identification system, an information disclosure system, online distribution, and a group purchasing organization system in Korea

    Combined Ethanol Extract of Grape Pomace and Omija Fruit Ameliorates Adipogenesis, Hepatic Steatosis, and Inflammation in Diet-Induced Obese Mice

    No full text
    The aim of this study was to evaluate the long-term effects of grape pomace ethanol extract (GPE) with or without omija fruit ethanol extract (OFE) on adiposity, hepatic steatosis, and inflammation in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) as the control diet and HFD plus GPE (0.5%, w/w) with or without OFE (0.05%, w/w) as the experimental diet for 12 weeks. GPE alone did not significantly affect adipogenesis and hepatic steatosis. However, the supplementation of GPE + OFE significantly lowered body weight gain, white adipose tissue weight, adipocyte size, and plasma free fatty acid and adipokines (leptin, PAI-1, IL-6, and MCP-1) levels in HFD-fed mice compared to those of the control group. These beneficial effects of GPE + OFE were partly related to the decreased expression of lipogenic and inflammatory genes in white adipose tissue. GPE + OFE supplementation also significantly lowered liver weight and ameliorated fatty liver by inhibiting expression of hepatic genes involved in fatty acid and cholesterol syntheses as well as inflammation and by activating hepatic fatty acid oxidation. These findings suggest that the combined ethanol extract of grape pomace and omija fruit has the potential to improve adiposity and fatty liver in dietinduced obese mice

    Combined Ethanol Extract of Grape Pomace and Omija Fruit Ameliorates Adipogenesis, Hepatic Steatosis, and Inflammation in Diet-Induced Obese Mice

    Get PDF
    The aim of this study was to evaluate the long-term effects of grape pomace ethanol extract (GPE) with or without omija fruit ethanol extract (OFE) on adiposity, hepatic steatosis, and inflammation in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) as the control diet and HFD plus GPE (0.5%, w/w) with or without OFE (0.05%, w/w) as the experimental diet for 12 weeks. GPE alone did not significantly affect adipogenesis and hepatic steatosis. However, the supplementation of GPE + OFE significantly lowered body weight gain, white adipose tissue weight, adipocyte size, and plasma free fatty acid and adipokines (leptin, PAI-1, IL-6, and MCP-1) levels in HFD-fed mice compared to those of the control group. These beneficial effects of GPE + OFE were partly related to the decreased expression of lipogenic and inflammatory genes in white adipose tissue. GPE + OFE supplementation also significantly lowered liver weight and ameliorated fatty liver by inhibiting expression of hepatic genes involved in fatty acid and cholesterol syntheses as well as inflammation and by activating hepatic fatty acid oxidation. These findings suggest that the combined ethanol extract of grape pomace and omija fruit has the potential to improve adiposity and fatty liver in diet-induced obese mice

    5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion

    No full text
    A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-α) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-α , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis

    Korean Political Culture: An Interpretative Essay

    No full text
    corecore