56 research outputs found

    Original Article Guidelines and diagnostic algorithm for patients with suspected systemic mastocytosis: a proposal of the Austrian competence network (AUCNM)

    Get PDF
    Abstract: Systemic mastocytosis (SM) is a hematopoietic neoplasm characterized by pathologic expansion of tissue mast cells in one or more extracutaneous organs. In most children and most adult patients, skin involvement is found. Childhood patients frequently suffer from cutaneous mastocytosis without systemic involvement, whereas most adult patients are diagnosed as suffering from SM. In a smaller subset of patients, SM without skin lesions develops which is a diagnostic challenge. In the current article, a diagnostic algorithm for patients with suspected SM is proposed. In adult patients with skin lesions and histologically confirmed mastocytosis in the skin (MIS), a bone marrow biopsy is recommended regardless of the serum tryptase level. In adult patients without skin lesions who are suffering from typical mediator-related symptoms, the basal serum tryptase level is an important diagnostic parameter. In those with slightly elevated tryptase (15-30 ng/ml), additional non-invasive investigations, including a KIT mutation analysis of peripheral blood cells and sonographic analysis, is performed. In adult patients in whom i) KIT D816V is detected or/and ii) the basal serum tryptase level is clearly elevated (> 30 ng/ml) or/and iii) other clinical or laboratory features are suggesting the presence of occult mastocytosis, a bone marrow biopsy should be performed. In the absence of KIT D816V and other indications of mastocytosis, no bone marrow investigation is required, but the patient's course and the serum tryptase levels are examined in the follow-up

    Mast cells as a unique hematopoietic lineage and cell system:From Paul Ehrlich's visions to precision medicine concepts

    Get PDF
    The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs

    STAT5 is Expressed in CD34+/CD38− Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms

    No full text
    Janus kinase 2 (JAK2) and signal transducer and activator of transcription-5 (STAT5) play a key role in the pathogenesis of myeloproliferative neoplasms (MPN). In most patients, JAK2 V617F or CALR mutations are found and lead to activation of various downstream signaling cascades and molecules, including STAT5. We examined the presence and distribution of phosphorylated (p) STAT5 in neoplastic cells in patients with MPN, including polycythemia vera (PV, n = 10), essential thrombocythemia (ET, n = 15) and primary myelofibrosis (PMF, n = 9), and in the JAK2 V617F-positive cell lines HEL and SET-2. As assessed by immunohistochemistry, MPN cells displayed pSTAT5 in all patients examined. Phosphorylated STAT5 was also detected in putative CD34+/CD38− MPN stem cells (MPN-SC) by flow cytometry. Immunostaining experiments and Western blotting demonstrated pSTAT5 expression in both the cytoplasmic and nuclear compartment of MPN cells. Confirming previous studies, we also found that JAK2-targeting drugs counteract the expression of pSTAT5 and growth in HEL and SET-2 cells. Growth-inhibition of MPN cells was also induced by the STAT5-targeting drugs piceatannol, pimozide, AC-3-019 and AC-4-130. Together, we show that CD34+/CD38− MPN-SC express pSTAT5 and that pSTAT5 is expressed in the nuclear and cytoplasmic compartment of MPN cells. Whether direct targeting of pSTAT5 in MPN-SC is efficacious in MPN patients remains unknown

    Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V

    No full text
    Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V(+)) and HMC-1.2 cells (KIT G560V(+)/KIT D816V(+)) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC(50)-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells

    Efficacy and Synergy of Small Molecule Inhibitors Targeting FLT3-ITD+ Acute Myeloid Leukemia

    No full text
    Constitutive activation of FLT3 by ITD mutations is one of the most common genetic aberrations in AML, present in ~1/3 of cases. Patients harboring FLT3-ITD display worse clinical outcomes. The integration and advancement of FLT3 TKI in AML treatment provided significant therapeutic improvement. However, due to the emergence of resistance mechanisms, FLT3-ITD+ AML remains a clinical challenge. We performed an unbiased drug screen to identify 18 compounds as particularly efficacious against FLT3-ITD+ AML. Among these, we characterized two investigational compounds, WS6 and ispinesib, and two approved drugs, ponatinib and cabozantinib, in depth. We found that WS6, although not yet investigated in oncology, shows a similar mechanism and potency as ponatinib and cabozantinib. Interestingly, ispinesib and cabozantinib prevent activation of AXL, a key driver and mechanism of drug resistance in FLT3-ITD+ AML patients. We further investigated synergies between the selected compounds and found that combination treatment with ispinesib and cabozantinib or ponatinib shows high synergy in FLT3-ITD+ AML cell lines and patient samples. Together, we suggest WS6, ispinesib, ponatinib and cabozantinib as novel options for targeting FLT3-ITD+ AML. Whether combinatorial tyrosine kinase and kinesin spindle blockade is effective in eradicating neoplastic (stem) cells in FLT3-ITD+ AML remains to be determined in clinical trials

    Comparative oncology: The paradigmatic example of canine and human mast cell neoplasms

    No full text
    In humans, advanced mast cell (MC) neoplasms are rare malignancies with a poor prognosis. Only a few preclinical models are available, and current treatment options are limited. In dogs, MC neoplasms are the most frequent malignant skin tumours. Unlike low-grade MC neoplasms, high-grade MC disorders usually have a poor prognosis with short survival. In both species, neo- plastic MCs display activating KIT mutations, which are considered to contribute to disease evo- lution. Therefore, tyrosine kinase inhibitors against KIT have been developed. Unfortunately, clinical responses are unpredictable and often transient, which remains a clinical challenge in both species. Therefore, current efforts focus on the development of new improved treatment strategies. The field of comparative oncology may assist in these efforts and accelerate human and canine research regarding diagnosis, prognostication, and novel therapies. In this article, we review the current status of comparative oncology approaches and perspectives in the field of MC neoplasms

    Deep Morphology Learning Enhances Ex Vivo Drug Profiling-Based Precision Medicine

    No full text
    Drug testing in patient biopsy-derived cells can identify potent treatments for patients suffering from relapsed or refractory hematologic cancers. Here we investigate the use of weakly supervised deep learning on cell morphologies (DML) to comple-ment diagnostic marker-based identifi cation of malignant and nonmalignant cells in drug testing. Across 390 biopsies from 289 patients with diverse blood cancers, DML-based drug responses show improved reproducibility and clustering of drugs with the same mode of action. DML does so by adapting to batch effects and by autonomously recognizing disease-associated cell morphologies. In a post hoc analysis of 66 patients, DML-recommended treatments led to improved progression-free survival compared with marker-based recommendations and physician's choice-based treatments. Treatments recommended by both immunofl uorescence and DML doubled the fraction of patients achieving exceptional clinical responses. Thus, DML-enhanced ex vivo drug screening is a promising tool in the identifi cation of effective personalized treatments.SIGNIFICANCE: We have recently demonstrated that image-based drug screening in patient samples identifi es effective treatment options for patients with advanced blood cancers. Here we show that using deep learning to identify malignant and nonmalignant cells by morphology improves such screens. The presented workfl ow is robust, automatable, and compatible with clinical routine.ISSN:2643-3249ISSN:2643-323

    Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal

    Get PDF
    Mast cell neoplasms are one of the most frequently diagnosed malignancies in dogs. The clinical picture, course, and prognosis vary substantially among patients, depending on the anatomic site, grade and stage of the disease. The most frequently involved organ is the skin, followed by hematopoietic organs (lymph nodes, spleen, liver, and bone marrow) and mucosal sites of the oral cavity and the gastrointestinal tract. In cutaneous mast cell tumors, several grading and staging systems have been introduced. However, no comprehensive classification and no widely accepted diagnostic criteria have been proposed to date. To address these open issues and points we organized a Working Conference on canine mast cell neoplasms in Vienna in 2019. The outcomes of this meeting are summarized in this article. The proposed classification includes cutaneous mast cell tumors and their sub-variants defined by grading- and staging results, mucosal mast cell tumors, extracutaneous/extramucosal mast cell tumors without skin involvement, and mast cell leukemia (MCL). For each of these entities, diagnostic criteria are proposed. Moreover, we have refined grading and staging criteria for mast cell neoplasms in dogs based on consensus discussion. The criteria and classification proposed in this article should greatly facilitate diagnostic evaluation and prognostication in dogs with mast cell neoplasms and should thereby support management of these patients in daily practice and the conduct of clinical trials
    corecore