1,183 research outputs found

    Yang-Lee Edge Singularity on a Class of Treelike Lattices

    Full text link
    The density of zeros of the partition function of the Ising model on a class of treelike lattices is studied. An exact closed-form expression for the pertinent critical exponents is derived by using a couple of recursion relations which have a singular behavior near the Yang-Lee edge.Comment: 9 pages AmsTex, 2 eps figures, to appear in J.Phys.

    Parental employment and child behaviors: Do parenting practices underlie these relationships?

    Get PDF
    This study examined whether hours of parental employment were associated with child behaviors via parenting practices. The sample included 2,271 Australian children aged 4-5 years at baseline. Two-wave panel mediation models tested whether parenting practices that were warm, hostile, or characterized by inductive reasoning linked parent\u27s hours of paid employment with their child\u27s behavior at age 6-7 years. There were significant indirect effects linking mother employment to child behavior. No paid employment and full-time work hours were associated with more behavioral problems in children through less-warm parenting practices; few hours or long hours were associated with improved behavioral outcomes through less-hostile parenting practices. These findings may have implications for developing policies to enable parents to balance work and family demands

    Efficient Experimental and Data-Centered Workflow for Microstructure-Based Fatigue Data – Towards a Data Basis for Predictive AI Models

    Get PDF
    Background Early fatigue mechanisms for various materials are yet to be unveiled for the (very) high-cycle fatigue (VHCF) regime. This can be ascribed to a lack of available data capturing initial fatigue damage evolution, which continues to adversely affect data scientists and computational modeling experts attempting to derive microstructural dependencies from small sample size data and incomplete feature representations. Objective The aim of this work is to address this lack and to drive the digital transformation of materials such that future virtual component design can be rendered more reliable and more efficient. Achieving this relies on fatigue models that comprehensively capture all relevant dependencies. Methods To this end, this work proposes a combined experimental and data post-processing workflow to establish multimodal fatigue crack initiation and propagation data sets efficiently. It evolves around fatigue testing of mesoscale specimens to increase damage detection sensitivity, data fusion through multimodal registration to address data heterogeneity, and image-based data-driven damage localization. Results A workflow with a high degree of automation is established, that links large distortion-corrected microstructure data with damage localization and evolution kinetics. The workflow enables cycling up to the VHCF regime in comparatively short time spans, while maintaining unprecedented time resolution of damage evolution. Resulting data sets capture the interaction of damage with microstructural features and hold the potential to unravel a mechanistic understanding. Conclusions The proposed workflow lays the foundation for future data mining and data-driven modeling of microstructural fatigue by providing statistically meaningful data sets extendable to a wide range of materials

    Exploiting the Enumeration of All Feature Model Configurations

    Get PDF
    .Feature models are widely used to encode the configurations of a software product line in terms of mandatory, optional and exclusive features as well as propositional constraints over the features. Numerous computationally expensive procedures have been developed to model check, test, configure, debug, or compute relevant information of feature models. In this paper we explore the possible improvement of relying on the enumeration of all configurations when performing automated analysis operations. We tackle the challenge of how to scale the existing enumeration techniques by relying on distributed computing. We show that the use of distributed computing techniques might offer practical solutions to previously unsolvable problems and opens new perspectives for the automated analysis of software product lines.Junta de Andalucía P12-TIC-1867Ministerio de Economía y Competitividad TIN2015- 70560-

    The Correlation-Based Method for the Movement Compensation in the Analysis of the Results of FRAP Experiments

    Get PDF
    This paper presents a computational algorithm for the detection and compensation for intracellular movement in the FRAP experiments with focal adhesions in living cells. The developed approach is based on the calculation of correlation coefficient. It was validated on the series of the experimental datasets and shows the successful results in the comparison with other widelyestablished methods

    Successful Auxiliary Liver Transplant Followed by Hematopoietic Stem Cell Transplantation in X-Linked Lymphoproliferative Disease Type 1

    Get PDF
    We described a five-year-old boy who presented with acute liver failure of indeterminate aetiology, requiring urgent liver transplant. Post-operative course was complicated by pancytopaenia, hypogammaglobulinaemia and cerebral lesions, histologically confirmed as EBV-driven post-transplant lymphoproliferative disease. Genetic testing showed XLP1 mutation, prompting matched-unrelated haematopoietic stem cell transplant to cure his primary immunodeficiency

    Recommended motor assessments based on psychometric properties in individuals with dementia: A systematic review

    Get PDF
    Abstract Background Motor assessments are important to determine effectiveness of physical activity in individuals with dementia (IWD). However, inappropriate and non-standardised assessments without sound psychometric properties have been used. This systematic review aims to examine psychometric properties of motor assessments in IWD combined with frequency of use and effect sizes and to provide recommendations based on observed findings. We performed a two-stage systematic literature search using Pubmed, Web of Science, Cochrane Library, ALOIS, and Scopus (inception - July/September 2018, English and German). The first search purposed to identify motor assessments used in randomised controlled trials assessing effectiveness of physical activity in IWD and to display their frequency of use and effect sizes. The second search focused on psychometric properties considering influence of severity and aetiology of dementia and cueing on test-retest reliability. Two reviewers independently extracted and analysed findings of eligible studies in a narrative synthesis. Results Literature searches identified 46 randomised controlled trials and 21 psychometric property studies. While insufficient information was available for validity, we observed sufficient inter-rater and relative test-retest reliability but unacceptable absolute test-retest reliability for most assessments. Combining these findings with frequency of use and effect sizes, we recommend Functional Reach Test, Groningen Meander Walking Test (time), Berg Balance Scale, Performance Oriented Mobility Assessment, Timed Up & Go Test, instrumented gait analysis (spatiotemporal parameters), Sit-to-Stand assessments (repetitions> 1), and 6-min walk test. It is important to consider that severity and aetiology of dementia and cueing influenced test-retest reliability of some assessments. Conclusion This review establishes an important foundation for future investigations. Sufficient relative reliability supports the conclusiveness of recommended assessments at group level, while unacceptable absolute reliability advices caution in assessing intra-individual changes. Moreover, influences on test-retest reliability suggest tailoring assessments and instructions to IWD and applying cueing only where it is inevitable. Considering heterogeneity of included studies and insufficient examination in various areas, these recommendations are not comprehensive. Further research, especially on validity and influences on test-retest reliability, as well as standardisation and development of tailored assessments for IWD is crucial. This systematic review was registered in PROSPERO (CRD42018105399)

    A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories

    Full text link
    Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We test them against simulated and experimental data containing the most prominent difficulties encountered in analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in inferring kinetic information from smFRET trajectories. In addition, we formulate concrete recommendations and identify key targets for future developments, aimed to advance our understanding of biomolecular dynamics through quantitative experiment-derived models
    corecore