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Abstract
Background Early fatigue mechanisms for various materials are yet to be unveiled for the (very) high-cycle fatigue (VHCF) 
regime. This can be ascribed to a lack of available data capturing initial fatigue damage evolution, which continues to 
adversely affect data scientists and computational modeling experts attempting to derive microstructural dependencies from 
small sample size data and incomplete feature representations.
Objective The aim of this work is to address this lack and to drive the digital transformation of materials such that future 
virtual component design can be rendered more reliable and more efficient. Achieving this relies on fatigue models that 
comprehensively capture all relevant dependencies.
Methods To this end, this work proposes a combined experimental and data post-processing workflow to establish multi-
modal fatigue crack initiation and propagation data sets efficiently. It evolves around fatigue testing of mesoscale specimens 
to increase damage detection sensitivity, data fusion through multimodal registration to address data heterogeneity, and 
image-based data-driven damage localization.
Results A workflow with a high degree of automation is established, that links large distortion-corrected microstructure data 
with damage localization and evolution kinetics. The workflow enables cycling up to the VHCF regime in comparatively 
short time spans, while maintaining unprecedented time resolution of damage evolution. Resulting data sets capture the 
interaction of damage with microstructural features and hold the potential to unravel a mechanistic understanding.
Conclusions The proposed workflow lays the foundation for future data mining and data-driven modeling of microstructural 
fatigue by providing statistically meaningful data sets extendable to a wide range of materials.

Keywords Crack initiation · Crack propagation · Microstructure · Data fusion · Data-driven methods · Deep learning · 
Multimodal data registration

Introduction

Tailored materials are the driving force for the introduc-
tion of new products to the market. According to [1], more 
than 60% of new products can be accredited to material 

developments. Development and qualification time of mate-
rials, therefore, often pose a limiting factor for industry. 
Multiple national research efforts such as the Material 
Genome Initiative [2] (United States of America), Materials 
Genome Engineering [3] (China), MaterialDigital [4] (Ger-
many) address the digital transformation of materials aiming 
for accelerated materials design and optimization. Achieving 
these objectives requires digital representations of materials 
and sophisticated material models describing the materials 
state over its lifetime. Prospectively, this could ensure reli-
ability of components with shortened development cycles 
and reduced testing sample sizes. Since fatigue of materi-
als determines the product lifetime in many applications, 
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accurate fatigue models predicting lifetime and its scatter 
are of particular importance. Despite its pivotal role for the 
product lifetime in many applications where components 
are loaded under very high cycle fatigue (VHCF) condi-
tions, a comprehensive mechanistic understanding of ini-
tial fatigue damage evolution is lacking. This is owed to a 
multitude of reasons, but most importantly, the complex-
ity of the fatigue feature space, diversity of materials, and 
experimental limitations. The latter in particular, results in 
a lack of open-access data capturing initial fatigue damage 
evolution, which in turn causes the absence of disclosed 
post-processing routines. Considering the inherent nature 
of fatigue crack initiation, data describing it will presum-
ably always be sparse. In initial attempts to describe micro-
structural damage emergence by data-driven methods, the 
absence of representative data posed a substantial constraint 
[5, 6]. However, especially these data-driven methodologies 
hold the potential to attain models that generalize over a 
broader range of materials and processes.

To allow for modeling based on physical mechanisms, 
such data sets should comprise information on the surface 
topography [7], local strain distributions, three-dimensional 
microstructure [8, 9] and its evolution. It should resolve 
damage accumulation kinetics as well as crack initiation and 
propagation. The characterization method should provide the 
accumulation of cycles up to the VHCF regime in a reason-
able time span. Furthermore, there are additional require-
ments that are set frequently, including non-intermittent and 
environmental condition experimentation. Satisfying these 
requirements would enable transcribing the relations into 
fatigue models.

However, there is no fatigue characterization technique 
available, which complies with these demands exhaustively. 
This includes techniques such as the near-field and far-field 
High Energy X-ray Diffraction Microscopy (HEDM) as well 
as diffraction contrast tomography (DCT), which arguably 
can address these demands to the largest extent. While they 
enabled in-situ insights into the 3D microstructure evolution, 
these aspiring methods, for now, hold limitations regarding 
availability, VHCF testing capability, and spatial resolution 
[10, 11]. Furthermore, while both HEDM and DCT score 
similar results, there are some inconsistencies concerning 
microstructure imaging [12] that are yet to be resolved. In 
contrast, the vast majority of reported experimental fatigue 
studies rely on the sequential characterization of microstruc-
ture, and fatigue damage evolution [13–15]. Both approaches 
involve elaborate post-processing routines to convert the raw 
data into interpretable information.

This work presents a workflow for the efficient estab-
lishment of multimodal fatigue data sets. It aims to pro-
vide methodological insights in fatigue characterization 
and ultimately address the present lack of data for a wide 
range of metals. A workflow is demonstrated, where fatigue 

characterization of mesoscale specimen extending upon  
[16] and [17] is embedded in a custom workflow consist-
ing of complementary analytical characterization and data 
post-processing techniques. Throughout the workflow, the 
emphasis is placed on a high degree of automation and gen-
eralizability to generate multimodal data sets for various 
materials efficiently. As boundary conditions and specimen 
geometry are known and specimen volumes are manageable, 
the data sets provide straightforward integration into compu-
tational modeling efforts. For instance, these data sets facili-
tate the validation of computational micromechanical fatigue 
models such as crystal plasticity finite element (CPFEM) 
or related fast Fourier transform (FFT) based approaches. 
Moreover, given the improved degree of workflow automa-
tion, it is particularly suitable to produce highly quantita-
tive data sets to build the foundation for data-driven fatigue  
damage evolution modeling or data mining to find sensitive 
features.

Experimental and Methods

Workflow Description

A schematic of the workflow is depicted in Fig. 1, where 
steps (1–9) are in the scope of this work.

The aforementioned fatigue testing (6) provides pro-
nounced sensitivity regarding initial fatigue damage detec-
tion through a sophisticated control mechanism as well as 
the reduction of the highly-loaded volume through specimen 
miniaturization and bending resonant loading. Therefore, a 
comparatively high signal-to-noise ratio is obtained. Addi-
tionally, a bidirectional stroboscope illumination and image 
acquisition system enable localization of damage and track-
ing its cyclic evolution. To be specific, the resulting series 
of in-situ images allows detection of protrusion formation 

Fig. 1  Overview of the workflow including the experimental 
approach and the data handling
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and crack initiation, both manifesting themselves as regions 
of elevated pixel intensity. Despite the inherent scarcity of 
damage locations, ascribed to their tendency to occur only at 
sites of defect-induced stress concentration, a variety of such 
damage emergence events can be captured. This is attained 
through specimen and testing setup design optimization, 
described in “Fatigue of Mesoscale Specimen”. Employ-
ing mesoscale specimens over notched macroscopic ones 
improves sensitivity regarding damage detection while ren-
dering time-consuming characterization techniques applica-
ble for the whole highly-loaded specimen surface/volume. 
In terms of complementary microstructure and topography 
characterization, 2D electron backscatter diffraction (EBSD) 
before fatigue (4) and topography contrast SEM stitch image 
acquisition before (3), and after (7) fatigue is applied, 
respectively. The undeformed reference state of the speci-
men, aside from indicating surface defects present before 
fatigue, allows correction of the imaging-based distinct 
distortions present in the different modalities. Subsequent 
data processing involves systematic multimodal registra-
tions (spatial alignment) and data fusion of the individual 
collected data sets (9). Using an accordingly trained deep 
learning model (8) [18], damage locations in high-resolved 
SEM stitch images after fatigue are detected pixel-wise 
(semantic segmentation). Transcribing this information onto 
the in-situ image series potentially promotes the detection 
of fatigue damage in it and compensates for its underlying 
moderate resolving power. Moreover, accurate registration 
would enable the assignment of damage locations and their 
evolution kinetics to microstructural entities such as grains 
or their boundaries. In the following, the individual elements 
of this workflow are described.

Specimen Fabrication and Characterization

Exemplarily, the material EN 1.4003 (AISI 3Cr12), a fer-
ritic stainless steel, is considered in this work. In Table 1 
the average values of the alloying elements are summarized. 
Planar, mesoscale fatigue specimens were produced from 
as-received rod material with a diameter of 21 mm, which 
previously underwent hot rolling, grinding, cold drawing, 
and annealing. The specimen’s fabrication employed differ-
ent processing steps, including electrical discharge machin-
ing to fabricate disks and laser cutting to define the specimen 
shape, shown in [16]. As opposed to the there described 
geometry, a thickness of 340� m and minimal (center) beam 
width of 480� m were targeted. Two planar specimens 
were extracted per disk such that the rod axis was oriented 

orthogonal to the specimen plane. The positions at which 
the specimens were extracted were chosen such that a fixed 
distance from the disk center is kept to avoid regions with 
higher segregation emergence in the core of the rod. Subse-
quently, silicon carbide paper grinding and electropolishing 
with an electrolyte composed of perchloric acid, 2-Butox-
yethanol, ethanol, and water  (Struers® A2) were performed. 
Latter was motivated in removing the laser cutting-induced 
heat-affected zones at the specimen sidewalls. The elec-
tropolishing process introduces a slight, beneficial specimen 
edge rounding circumventing crack initiation at otherwise 
sharp edges, facilitating inference of microstructure-related 
influence factors. To ensure appropriate surface conditions 
for electron diffraction techniques, the surface finish on both 
sides of the planar specimen was performed through rota-
tional polishing, including 9 μ m, 3 μ m diamond suspensions 
as well as colloidal silica polishing (OPS).

As indicated in Fig. 1, different characterization steps 
were performed on the SEM, encompassing Everhart-
Thorley secondary electron (SE2) (3) and EBSD data (4) 
acquisition. Either characterization technique is applied to 
the highly-loaded regime of both specimen sides. These 
measurements utilized a Zeiss Supra 40VP equipped with 
an EDAX TSL EBSD system. For EBSD data, the working 
distance (WD), scan step size, and aperture were chosen 
to be 18 mm, 0.6 μ m and 60 mm, respectively. Activating 
high current mode enabled high electron collection rates. 
Dynamic focusing ensured good pattern quality across the 
whole region of interest. As a part of the automated post-
processing routine, EBSD pixels that exhibit confidence 
index (CI) below 0.05 are discarded, and the grains and grain 
boundary segments are reconstructed. Therefore, the Voro-
noi tessellation-based clustering algorithm following [19] 
implemented in the MTEX toolbox [20] is utilized. Pixel 
misorientations between adjacent EBSD pixels exceeding 
5°were considered to separate grains. Grains consisting 
of less than eight indexed pixels are discarded. The EBSD 
data reveals an average equivalent grain diameter of about 
30 μ m and single grains up to 100 μ m diameter. In longitu-
dinal direction of the rod, the EBSD image displays slightly 
elongated grain shapes. Therefore, the specimen alignment 
relative to the rod results in elongated grains and elongated 
MnS inclusions along in the out-of-plane direction of the 
specimen. The collection of microtexture data is indispen-
sable for the investigation of how microstructural features 
impact the damage evolution. Performing EBSD scans prior 
to as opposed to after fatigue holds the advantage that a 
comprehensive, undisturbed orientation mapping is possible.

Table 1  Nominal chemical 
composition of ferritic stainless 
steel 1.4003 in weight %

Material C Si Mn P S N Cr Ni Mo

1.4003   0.013 0.67 1.08 0.018 0.021 0.013 11.9 0.43 0.33
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However, a limiting factor in mapping EBSD onto other 
image-based data is posed by spatial distortions in the EBSD 
data. The 70°specimen tilt during the measurement resulting 
in a position-dependent WD, in conjunction with electron 
Larmor precession, causes such distortions [21]. These are 
amplified by specimen surface curvature that is prominent 
in the vicinity of specimen edges. The polishing introduces 
deviations up to 3°from an ideal planar specimen surface. 
Additionally to the spatial distortions, the orientation meas-
urements are affected if large sample surfaces are scanned, 
see [22, 23]. Primarily, the spatial distortions in EBSD-
inferred microstructures impede the correct assignment 
of damage derived from comparatively undistorted image 
sources to its underlying microstructural feature. Overcom-
ing this challenge is an essential step towards performing 
reliable microstructure-property relationship analysis when 
dealing with large area EBSD scans. This motivated the 
acquisition of the preliminary undistorted and undeformed 
reference (Fig. 1, (3)) since it allows for a spatial distor-
tion correction of EBSD data as proposed by [23–25]. To 
reduce spatial distortions in the reference SEM image (3) 
and SEM image after fatigue (7), high magnifications, long 
dwell times, and low working distances were utilized here 
as suggested by [26]. Tile images acquired in such a manner 
were stitched subsequently to account for the whole highly 
loaded beam section despite the high magnifications. For 
image stitching, the implementation [27] was used. This pro-
cedure allows resolving damage features appropriately and 
specimen-scale imaging without low magnifications, typi-
cally associated with pronounced optical distortions [28]. 
At the same time, drift distortions or scan line shifts were 
not apparent. The EBSD distortion correction approach is 
delineated in “Multimodal Image Registrations”.

While not part of the proposed workflow, a few atomic 
force microscopy (AFM) topographic maps were collected to 
evaluate the in-situ imaging during fatigue, described in the 
following section. Therefore, a  Veeco® Dimension V AFM 
was utilized to conduct scans after fatigue in regions of pro-
trusions at the specimen surface. A scan size of 55×55 μ m 
was appropriate for all target protrusions, and the samples 
per scanned line were chosen to be 1024, resulting in a spa-
tial resolution of rx∕y ≈ 53 nm. For scanning a proportional 
gain of 30, interal gain of 15, and scan rate if 0.5 Hz was 
employed. The scans were performed in contact mode with a 
 Bruker® RTESPA-300 silicon tip with a nominal spring con-
stant of 40 N/m, nominal tip radius of 8 nm. A front, back, 
and side angle of 15 ± 2°, 25 ± 2°, and 17.5 ± 2°at the apex, 
respectively, affects which features are resolvable.

Fatigue of Mesoscale Specimen

Fatigue experimentation was conducted with a setup that 
extends upon Straub et. al [16]. The adapted fatigue setup 

(Fig. 2(a)) is briefly introduced in the following. It uses reso-
nant multi-axial loading of one-sided clamped, mesoscale 
specimen (Fig. 2(a), blue). Apart from the reduced specimen 
volume, bending and torsion loading (Fig. 2(b)) resulted in 
a reduction of highly-loaded volume, hence improving the 
signal-to-noise ratio. In conjunction with a sensitive control 
mechanism, detectability of initial fatigue damage states is 
attained. In addition to that, slip band formation and crack 
initiation are measured sensitively through a resonant fre-
quency change [16]. In this work, solely bending resonant 
fatigue was conducted. The control mechanism utilizes the 
phase response between sinusoidal piezo actuator excita-
tion and the measured angle of rotation at the specimen’s 
unconstrained end. The time-resolved angle of rotation is 
measured through a laser reflected at the deflected speci-
men surface (at the unconstrained end of the beam), caus-
ing a displacement of the laser spot on a position-sensitive 
detector (PSD). By adapting the actuation frequency such 
that there is a 90° relative phase shift between the piezo 
excitation and PSD signal at all times in the course of cyclic 
loading, the first-order bending resonant frequency of the 
specimen is tracked. Resonant frequency changes are attrib-
uted to integral softening/hardening, damage evolution, or 
oxidation.

A fully reversed loading with a load ratio of R = -1 is 
applied. The present specimen geometry resulted in a 

Fig. 2  a) Overview of the fatigue setup illustrating the arrangement 
of piezo acuators (khaki), mesoscale sample (blue), laser (yellow), 
position sensitive device (green) and LEDs (black). b) Mesoscale 
specimen in a loaded state and the corresponding von Mises stress 
distribution for bending and torsional loading. c) and d) show the azi-
muthal and the polar plane of the spherical coordinate system to the 
sample surface orientation of the both LEDs, respectively. Moreover, 
the viewing direction (VD) of the camera in the polar coordinate sys-
tem is indicated
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resonant frequency of about f0 = 2 kHz at which it is cycled. 
Attaining N = 109 cycles or a relative frequency decrease of 
Δf∕f0 = 0.1% posed stopping criteria. In contrast to the vast 
majority of fatigue devices, this custom setup utilizes the 
angle of rotation as a control parameter for fatigue loading 
amplitude. Hence, before fatigue, the angle of rotation cor-
responding to a von Mises stress amplitude of �a = 270 MPa 
was computed by an iterative binary search scaling the 
results of a continuum FE modal analysis.

In order to observe local damage evolution, the setup 
was extended with a stroboscope illumination and camera 
system  (Basler® beat beA4000-62km monochrome camera 
and  Canon® MP-E 65mm f/2.8 1–5× macro objective) cap-
turing a series of in-situ light optical images [17]. Such an 
image series typically comprises several thousand images, 
and a subset of it is showcased in Fig. 3. In these inverted 
images, black and red arrow annotations indicate emerg-
ing and growing damage locations, respectively. Multiple 
protrusions, extrusions, and few cracks initiate across the 
specimen, and while some of the cracks stagnate, others 
manage to propagate.

The image formation is based on light scattered at dam-
age emerging from the specimen surface facing the camera. 
Therefore, the stroboscope utilizes two distinctly oriented 
light emitting diode (LED) spot lights (2×  CCS® HLV2-
22BL-1220_3W LED spot light with its wavelength peak 
at 465 nm, see Fig. 2), to illuminate the specimen during 
the inflection point of the fully reversed bending motion 
(i.e., the non-deflected state). Note that the relatively high 

resonant frequencies raise the demand for accurate timing 
and short duration of the light pulses. The camera integrates 
over multiple cycles and multiple light pulses to retrieve 
a detectable scatter signal from the specimen surface. The 
spatial orientation of the LEDs, L1 axial and L2 transversal, 
is illustrated in Fig. 2(c), (d) in the azimuthal and polar plane 
of the spherical coordinate system. Their orientation is cho-
sen such that the optical yield on the camera is maximized 
and the interference on the position-sensitive device is neg-
ligible. A configuration of nearly perpendicular azimuthal 
angles is employed to detect damage locations independent 
of their surface topography.

Data‑Driven Localization of Fatigue Damage

A segmentation methodology was devised to detect dam-
age locations pixel-wise in the high-resolved post-mortem 
SEM stitched images to assist the in-situ light optical imag-
ing. This modality was chosen as it can capture the relevant 
features of damage locations. The deep learning method-
ology and results are reported in [18] and will be briefly 
summarized here. A U-Net architecture [29] was trained to 
detect the plasticity traces (protrusions) and cracks utiliz-
ing damage micrographs and their corresponding manually 
annotated damage maps. The considered data was of the 
same material and similar fatigue conditions as here. A set 
of image transformations were applied for data augmentation 
during training to account for the variances introduced due 
to specimen geometry, imaging, and operator subjectivity. 
The segmentation prediction quality was measured on an 
unseen test data set by comparing model predictions with 
expert annotations. Therefore, the intersection over union 
metric (IoU), also referred to as the Jaccard index,

was utilized, where TP, FP, and FN are true positive, false 
positive, and false negative pixel predictions, respectively. 
For the relevant material, a mean IoU (averaged over both 
damage classes and the background) of 0.85 was achieved. 
The trained network was applied to the full stitched SEM 
image, and the resulting damage map was manually 
inspected and slightly modified.

Multimodal Image Registrations

Correlative microscopy holds the potential to give access 
to previously inaccessible information [30]. For instance, 
investigating the local interdependencies between localized 
cyclic damage evolution data and microstructure informa-
tion requires spatial alignment of both. While many com-
mercial correlative microscopy tools exist, they often rely 
on vendor-specific specimen holders and do not correct for 

(1)IoU =
TP

TP + FP + FN
,

Fig. 3  Intensity-inverted subset of the light optical images acquired 
in the course of a fatigue experiment with annotated damage loca-
tions. The black and red annotations indicate emergence and growth 
of defects, respectively. The numbers at the bottom of individual 
images indicate the cycle number at which the images were acquired
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non-linear distortions in the data sets [31]. In contrast, we 
applied image registrations to match the coordinate sys-
tems and correct distortions of the data sets. Registration 
methods can be subdivided into feature-based and intensity-
based techniques. While automated feature-based techniques 
require methods of feature detection, extraction, matching, 
and outlier exclusion, intensity-based ones rely on the cor-
relation of intensity textures in images or sub-images, see 
[32]. Multimodal data registration refers to the spatial align-
ment of the source to target data sets and is accompanied by 
challenges concerning data heterogeneity. This comprises 
aspects such as different imaging modalities, physical pixel 
sizes, dimensionalities, and field of views.

With regard to this study, the image-based data sets 
depicted in Fig. 4 were registered, where (s) denotes source, 
(it) intermediate target, and (t) target data sets. The in-situ 
images were optimized to have minimal optical geometric 
distortions by considering solely the center of the frame 
where the highly loaded specimen region was positioned. 
Moreover, the relatively narrow spectrum of the LED spot-
lights circumvents chromatic aberrations. When it comes to 
SEM image data, it was claimed that distortion correction 
is required for accurate overlay [33]. However, in our case, 
appropriate imaging conditions for image tiles, their stitch-
ing (see “Data-Driven Localization of Fatigue Damage”), 
and the usage of a custom specimen holder throughout the 
whole fatigue and analytical process chain minimized distor-
tions in SEM images and specimen alignment-induced rela-
tive distortions between the data sets. Therefore, the EBSD 
data was the only data set for which distortion correction 
was necessary.

In this multi-stage registration procedure, the undeformed 
and comparatively undistorted stitched SE2 SEM image of 

the specimen surface before fatigue acts as an intermedi-
ate registration target. This intermediate state facilitates 
subsequent collective transformation of all (s) and (it) data 
sets to the target EBSD stage by the same transformation. 
Hence, it could be ensured that all individual fairly undis-
torted source data sets are aligned well amongst each other. 
Note that using direct transformations to the distortion con-
taining EBSD map possibly results in an erroneous align-
ment amongst the transformed source images. In literature, 
automatic feature detection and matching for light optical 
and SEM data was reported [34] employing Scale-Invariant 
Feature transform (SIFT) [35]. However, this proved inad-
equate for the data at hand since the data sets exhibit a wide 
range of physical pixel sizes and distinct grayscale textures. 
Therefore, a landmark approach using a selection of point 
correspondences is conducted to derive most affine trans-
formations. Pores and static particles visible on the speci-
men surface in various modalities facilitate the user’s selec-
tion and matching of these features. Initially, the stitched 
SE2 image after fatigue and the in-situ light optical image 
time series are affine transformed to match the SE2 image 
before fatigue, see arrow (1) and (2) in Fig. 4, respectively. 
Additionally, a deep learning model-inferred segmentation 
map indicating damage locations is derived from the SE2 
image after fatigue testing (see “Data-Driven Localization 
of Fatigue Damage”) and transformed accordingly. Thus, 
every experimental source data set is at the stage of the SE2 
image before fatigue.

Carrying along the idealized geometry (without fabrication-
induced variances except actual specimen dimensions) and 
loading conditions, together with the embedded microstruc-
ture enables straightforward incorporation in micromechani-
cal simulations. The absence of defect-related features in the 
geometry necessitates a different approach for its registration. 
An intensity-based algorithm relying on shape-based features 
is used to transform the idealized specimen geometry repre-
sented by a binary mask onto a binary mask derived from the 
light optical images as indicated by the arrow (3) in Fig. 4, fol-
lowed by the transformation (2). Therefore, the Mattes mutual 
information metric [36], which measures the relation between 
two-pixel distributions, was employed. In the case of image 
registration, the measure contains information on how well 
pixel samples from both images are mapping onto each other. 
During registration, the alignment is optimized by reducing 
the entropy between the two-pixel distributions. In most of the 
implementations, so-called image pyramids, relying on subse-
quent filter and downsampling operations, are employed, e.g., 
[37]. These ensure that larger-scale features such as the speci-
men shape are taken into account as well.

Subsequently, using the landmark approach, a trans-
formation is inferred to commonly transform every data 
set from the intermediate target stage (SE2 before fatigue) 
to the target EBSD data stage (4). To derive this affine 

Fig. 4  Overview of the registration process. The regular arrows and 
the one denoted with the asterisk describe affine transformations 
and distortion correction by an elastic transformation, respectively. 
a) Stitched SEM image after fatigue (s) for accurate damage locali-
zation. The DL-derived damage segmentation map is transformed 
accordingly. b) Stitched SEM image before fatigue (it) acting as 
spatial reference and indicating prior defects. c) In-situ light optical 
image series (s) containing information on cyclic damage evolution. 
d) Idealized geometry (s) and boundary conditions. e) Inverse pole-
figure map from EBSD (t) for microtexture information. f) elastic 
transformation to correct for spatial distortions in EBSD



Experimental Mechanics 

transformation, common image features related to volume 
defects in the SE2 before fatigue and the SEM signal chan-
nel of the EBSD data are utilized. Since the EBSD data 
contains the aforementioned distortions, the superposition 
after this affine transformation is non-ideal. Finally, the 
correction of the EBSD data (5) takes place by computing 
its elastic transformation field relative to the affine trans-
formed SE2 image before fatigue, illustrated in Fig. 4(f). 
Therefore, a b-spline optimization incorporating landmark 
selection was performed, following [38]. This elastic trans-
formation utilizes the minimization of an energy functional 
consisting of several weighted energy terms. Namely, the 
terms are represented by dissimilarity energy between the 
images, optional landmark constraints, regularization, 
and bidirectional consistency. For the purpose of registra-
tion, the dissimilarity term attempts to minimize the pixel 
intensity difference between the warped source image and 
the target image. The regularization term ensures gradual 
displacements without discontinuities in regions where 
no landmark information is available. Landmark informa-
tion constraints the deformation depending on the weight 
applied for it. The bidirectional consistency energy refers 
to the inverse transformation and ensures the invertibility 
of the deformations. Images and displacements are consti-
tuted by cubic b-splines, as proposed by [39]. This infor-
mation is translated to pixel-wise displacements to deter-
mine each sampled data point’s corrected positions on the 
hexagonal EBSD grid. The EBSD attributes (Euler angles, 
confidence index, image quality, etc.) are assigned to the 
closest grid point without altering the grid point positions. 
Subsequently, data cleaning and grain reconstruction as 
described in “Specimen Fabrication and Characteriza-
tion” are applied.

Results and Discussion

This section aims to evaluate and discuss previously 
described imaging and registration methodologies as well 
as to showcase the information contained in the data sets. 
For the latter part, the data set and the associated analyses 
were created from a single fatigue experiment and subse-
quent post-processing.

Characterization of In‑Situ Imaging

To characterize the in-situ imaging, the dependence of its 
resulting local grayscale image texture on the slip trace 
topography (i.e., extrusions, intrusions, protrusions) is inves-
tigated. Therefore, atomic force microscopy (AFM) maps are 
acquired. In Fig. 5(a), (b) a comparison of both modalities 
is illustrated for two instances of protrusions.

For a more quantitative understanding of the relationship 
between topography and resulting light optical image tex-
ture, multiple plasticity trace features were computed from 
both the topographic map and their corresponding elevated 
intensity region. Subsequently, these features were evaluated 
with regard to their correlation. Extracted features from the 
AFM information included various roughness metrics and 
geometrical quantities. The extruded maximum and average 
elevation, extrusion ground area, volume, and area origi-
nating from projecting the protrusion topography onto the 
axial LED’s emitting plane AAP (scattering cross-section) 
were considered. These features were computed relative to 
the host grain background elevation. On the other hand, the 
set of features derived from the light optical representation 
comprised elevated intensity area and maximum, pixel aver-
aged, and pixel accumulated intensity. Assessing both fea-
ture sets for eight distinct extrusions/protrusions indicated 
that AAP correlates with the accumulated intensity most (see 
Fig. 4(c)). For this pair of variables, a Pearson correlation 
coefficient was R = 0.88.

It is plausible that the correlation of AAP to the accumu-
lated intensity is more robust than that of the extruded vol-
ume, for instance, since the accumulated intensity depends on 
the protrusion portion illuminated (scattering cross-section) 
by the LEDs. Nonetheless, it can be observed that the data 
points deviate from a linear behavior for larger projected 
areas. This can potentially be attributed to a more notable 

Fig. 5  a+b) Two exemplary comparisons of protrusions in cleaned 
AFM topographic maps with corresponding light-optical images after 
fatigue (inlay). c) Correlation plot between accumulated intensity 
from the light-optical images and the projection of protrusion topog-
raphy onto the emitting surface of the axial LED
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dependency of the accumulated intensity on the not con-
sidered extrusion surface orientation as protrusion size 
increases. The distinct shape in both modalities can be pri-
marily ascribed to the light optical imaging’s bidirectional 
lighting conditions. The substantial impact of the azimuthal 
illumination angle on the imaging of a static object was 
demonstrated in [40]. It was shown that occlusion prevents 
the realistic imaging of three-dimensional objects when few 
illumination directions are applied. When temporal imaging 
of dynamically evolving surface topography such as protru-
sions under motion is concerned, this is further complicated. 
In large grain size and single-phase materials, these plas-
ticity traces are typically extensive protrusions. Especially, 
in this case, pronounced topography changes in the course 
of cyclic loading occur. Then occlusions can sensitively 
impact the imaging and potentially lead to an overestima-
tion of topography change. On the other hand, the distinction 
between microstructurally short cracks and plasticity traces 
by inspecting local intensity distributions in these light opti-
cal images is not straightforward. In conjunction with the fact 
that cracks in many materials originate at surface plasticity 
traces, this impairs the crack initiation life’s determination 
from these optical image series. Despite these non-ideal 
imaging characteristics of the optical setting, microstruc-
tural damage emergence can be detected reliably. Especially 
when data fusion with highly resolved, feature-rich modali-
ties such as SEM and deduced damage segmentation maps 
is performed, many of the aforementioned challenges can 
be alleviated. Such damage maps reliably localize cracks, 
and surface plasticity traces pixel-wise and hence improve 
damage type distinction as well as counteract shading for 
improved damage connectivity inference.

Validation of Registration Methodology

To qualitatively assess the registration approach, a com-
parison between two inverse pole figure color-coded EBSD 
maps acquired before (Fig. 6(a)) and after fatigue (6(b)) is 
performed on the same specimen section. While the former 
contains the overlayed damage map (black) deduced from 
SEM imaging after fatigue and represented the proposed 
registration approach, the latter is superimposed with the 
intrinsic confidence index (CI) channel of the EBSD data. 
For straightforward comparison and illustration, both dam-
age types, originally differentiated by the DL model, were 
merged in Fig. 6(a).

From Fig. 6 it is evident that multiple fatigue-induced 
damage locations emerge across the specimen microstruc-
ture. Typical instances of microstructurally short cracks 
and protrusions developing the highly chromium-alloyed, 
ferritic EN 1.4003 steel are depicted in Fig. 7. In contrast 
to the literature, where most damage in the HCF/VHCF 
regime is reported to be associated with (internal) pore or 

inclusion defects [41], for the material and loading condi-
tions at hand (low amplitude bending), damage emerged at 
and is localized to grain boundaries at the surface predomi-
nantly. An exception to this are few protrusions developing 

Fig. 6  a) Inverse pole figure map before fatigue with the reference 
direction being the normal direction (ND), i.e. pointing out of the 
specimen plane. Damage locations from DL semantic segmentation 
in black from the SEM image after fatigue are registered and super-
imposed onto the the microstructure. The dashed box highlights a 
crack location investigated subsequently. b) Inverse pole figure map 
after fatigue in the same orientation setting. In this case the intrinsic 
confidence index channel of the EBSD data is superimposed as a gray 
value distribution indicating damage locations and polishing artifacts. 
The scale bar, the color code reference triangle and specimen coordi-
nate system apply to both images

Fig. 7  SE2 SEM images of damage locations. Subfigures a) and b) 
– c) show a typical short crack and two protrusion area, respectively
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at surface-residing processing-induced pores and crack sec-
tions that propagate in a transcrystalline manner. Moreover, 
a comparison of both images in Fig. 6 shows that the posi-
tions of damage locations with respect to the microstructure 
are in accordance. This applies to the whole highly loaded 
specimen region illustrated here, including the vicinity of 
specimen edges. Differences in shape and extent of indi-
vidual damage locations arise between both images.

From the agreement between both images to damage 
locations within the microstructure, it can be inferred that 
the applied affine and elastic transformations appropriately 
correct global alignment and trapezoidal distortion superim-
posed with further distortion effects. The proposed registra-
tion methodology, in contrast to grid calibration, in theory, 
provides the possibility to correct the specimen geometry-
dependent part of the distortions as well. Indeed, even at 
specimen boundaries where such geometry-induced distor-
tions arise due to edge rounding, the alignment of damage 
with microstructural features in both images is widely con-
formal. Discrepancies in the shape of damage locations are 
attributed to the fact that the DL segmentation model was 
trained to detect specific local and contextual image textures 
in topography-sensitive SE2 images rather than small-scale 
plasticity in the vicinity of slip traces that do not culminate in 
a surface change. Even though both damage types, predicted 
by the DL approach, were merged for visualization, the possi-
bility to reliably discern damage types distinguishes the pro-
posed multimodal workflow from the direct damage inference 
using EBSD data after fatigue. Furthermore, comprehensive 
microtexture information is accessible due to the absence 
of plastic deformation in the collected EBSD data before 
fatigue. In the future, automated alternatives for the multi-
modal registration process are required to avoid the manual 
selection of point correspondences between both images. 
This would render the post-processing chain fully automated. 
Recently, methodologies that employ convolutional neural 
networks for multimodal image registration were introduced 
[42, 43] that can potentially alleviate this issue.

Fatigue Damage Evolution Analysis

Damage localization As stated previously, Fig. 6 indicates 
that the damage is localizing to grain boundaries. Regis-
tration enables quantitative analysis of proximity between 
damage locations and characteristic microstructure or topog-
raphy features. In this case study, specifically, the euclid-
ean distance of damage to grain boundaries is investigated. 
The relative euclidean distance of every pixel containing 
damage to its nearest grain boundary segment neighbor is 
illustrated in Fig. 8 as a probability histogram (blue). The 
reference grain size to compute the relative euclidean dis-
tance was the halved minimal Feret diameter of the cor-
responding host grain. In order to compare the damage-GB 

distance distribution to a random case, two approaches were 
followed. The first artificial random distribution indicated by 
the plotted line was created by sampling from a unit circle-
shaped grain with replacement (solid line). Second, damage 
pixels were randomly distributed among all EBSD pixels, 
followed by normalization of the resulting histogram (red). 
Latter reference considers the identical microstructure and 
the same computation of relative distances as for the real 
damage distribution relying on the halved minimal Feret 
diameter.
In the damage probability histogram (blue), the meas-
ured distribution is more focused towards small relative 
euclidean distances when compared with both random 
references. In the direct vicinity of the GBs, multiples of 
random (MOR) in the range 1.5–2.0 are demonstrated.

This confirms that damage localizes to grain bounda-
ries well. Qualitatively, we arrive at a similar conclusion 
as [44, 45], who investigated the distance of stress hot-
spots derived from micromechanical simulations to micro-
structural features. In the future, systematic comparison of 
experiments and simulations can validate the mechanistic 
descriptions captured in fatigue models. Aside from GB 
segments, these euclidean distance probability distribu-
tion plots can be applied to GB triple points, inclusions, 
or pores to evaluate the distinct failure modes and their 
relevance in the specific material.

Load conversion to slip systems This study aims to get an 
insight into how the imposed stress state translates into slip 
activation. While the proposed workflow provides all bound-
ary conditions to conduct and incorporate micromechani-
cal simulation results seamlessly, here, the assumption of a 
uniaxial stress state and absence of microstructure-induced 
stress modulation is made. Following this simplification, 
global tensile and compressive stresses act in the specimen 

Fig. 8  Probability histogram distribution of euclidean distance 
between damaged/statistical reference pixels and its nearest grain 
boundary segments. While the actual reference was computed by 
assigning damage to EBSD pixels randomly, the circular reference 
considered a single unit circle grain
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axis direction, and its orientation can be evaluated concern-
ing the grain orientations.

Therefore, multiple inverse pole figures (IPF) of speci-
men axis orientation distributions were computed, see 
Fig. 9, following [13]. The black dots in subfigures 9(a) 
and 9(b) describe the specimen axis orientation in the 
crystal coordinate systems of EBSD pixels for which 
damage was observed. Maximum Schmid factors for a 
range of grain orientations can be computed and illus-
trated as an isoline contour plot within the IPF (dashed 
lines), see Figs. 9(a), (b). During maximum Schmid fac-
tor computation in Fig. 9(a) only {110}⟨111⟩ slip systems 
were accounted for, while isolines in Fig. 9(b) included 
{112} and {123} bcc slip systems as well. In this case 
neither a distinction between slip systems of different slip 
plane families nor asymmetries within specific slip planes 
is made. In Fig. 9(b) additionally an orientation density 
function (ODF) was estimated from the loading axis distri-
bution at damage containing pixels applying a de la Vallée 
Poussin kernel [46] with a halfwidth of 2.9°. In contrast, 
Fig. 9(c) shows the ODF (halfwidth = 2.0°) for all pixels 
contained in the EBSD scan as a reference. Different kernel 
halfwidths were chosen to account for the distinct amount 
of data points in both scenarios. The ODFs are measured 
in multiples of random.

From Fig.  9(a) it becomes apparent that indeed a 
large part of damage containing EBSD pixels exhibited 

orientations resulting in Schmid factors exceeding 0.48. This 
applies even more, when all three slip plane families are 
considered (Fig. 9(b)). The loading axis ODF considering 
only crystal orientations at damage locations in Fig. 9(b) 
shows three peaks, one pronounced peak (1) with MOR of 
approximately 6 and two minor peaks (2, 3) with MOR in 
the range 3–4. These peaks are situated in close proximity 
to the centers of the isolines of either slip system family 
associated with the highest Schmid factors.

In literature, surface plasticity traces and microstructur-
ally short cracks were related to slip activation and therefore 
dependent on the specific crystallographic scenario [47]. In 
the case of loading axes situated at the center of the standard 
triangle, single slip was reported to be dominant [48]. When 
comparing the specimen axis [100] ODF at the damage loca-
tions to the overall specimen axis [100] ODF (Fig. 9(c)), 
one can recognize that the major peak (4) at low Schmid 
factors observed in Fig. 9(c) is not reproduced in Fig. 9(b). 
However, the second-highest peak (5) in 9(c) located in a 
higher Schmid factor regime can be associated with the 
major peak (1) in Fig. 9(b). In conclusion, damage locations 
are in grains with high Schmid factors, but it presumably 
represents only one amongst multiple decisive factors in this 
material. Extending upon this, in the future, anomalies for 
dislocation glide in bcc [49] can be investigated for vari-
ous materials to get insights on slip sensitivity of different 
slip plane families, asymmetry of slip, and the pronounced 
influence of alloying elements on the slip. The contribution 
of protrusions and microstructurally short cracks to such 
specimen axis distributions can be broken down due to DL-
deduced damage maps’ availability.

Cyclic damage evolution In this analysis, the data set’s 
information content to cyclic damage evolution is evalu-
ated. Therefore, the region annotated with a dashed box in 
Fig. 6, which contains a microstructurally short crack, is 
superimposed with the in-situ image series, see Fig. 10(a)–l. 
Moreover, the states before and after fatigue acquired with 
SEM in Fig. 10(n), (o), respectively, pose references. Fig-
ure 10(m) shows the DL-derived damage map downsampled 
to the resolution of EBSD and therefore appeared coarser 
than Fig. 10(o).

From the post-mortem SEM in Fig. 10(o) it is observ-
able that two separate crack branches are present. This 
can not be resolved in the later stages of the in-situ image 
series (10(e)–(l)). However, the two distinct elevated 
intensity regions emerging in Fig. 10(b) indicate that two 
distinct intergranular cracks originated in close vicinity 
(approximately 5-10 μ m gap). From the image series, it 
can be deduced that upon crack formation, both crack 
instances exhibit bidirectional crack growth. Subsequently, 
the cracks converge and, based on the in-situ image series, 

Fig. 9  Inverse pole figures showing specimen axis [100] distributions. 
a) loading axis orientations at EBSD pixels which contain damage 
and isolines indicating the maximum Schmid factor considering bcc 
{110}⟨111⟩ slip systems. b) shows the same as a) except that max. 
Schmid factor isolines were computed considering all three slip plane 
families. Additionally, an ODF is superimposed on b) for easier com-
parison with c), which illustrates the ODF of the specimen axis for 
all EBSD pixels. Some considerable resulting peaks in the ODFs are 
annotated with star symbols. Values on the colorbar indicate multi-
ples of random
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seemingly merge. However, from Fig. 10(o), it is uncertain 
whether the cracks merged or growth concludes with a 
stress-relaxed state that prevents the two cracks from fully 
merging. In contrast to this, the other ends of the cracks 
proceed to grow and are intermittent by microstructural 
defects. The upper crack part transitions from an inter-
granular crack to a transgranular crack and subsequently 
undergoes growth direction changes (see Fig. 10(o)).

In order to analyze the crack growth rates and barrier 
mechanisms, the crack branches were considered individu-
ally, as illustrated in Fig. 10(m). Therefore, the assumption 
is made that the elevated intensity region solely transcribes 
the crack growth, even though there are intensity contribu-
tions from the crack and the surrounding surface plasticity. 
The crack growth of the upper and lower crack branch is 
illustrated in Fig. 11(a), (b), respectively.

In the following, we describe the results by referring to 
specific grains and grain boundaries by means of the desig-
nations introduced in Fig. 10(n). Crack initiation and growth 
occurred shortly after reaching the target amplitude (vertical 
dotted line in Fig. 11(a), (b)). Both figures show distinct 
plateaus in the course of microstructural crack growth. At 
every plateau, the growth is obstructed for a few 105 cycles. 
While the plateau #1 in Fig. 11(a) occurs at a surface resid-
ing grain boundary when transitioning from intercrystalline 
to transcrystalline crack growth, the crack resting at the 
other plateaus does not show any indication of superficial 
defect interaction. However, in the plateau #2 in Fig. 11(a) 
reorientation of the crack occurs, resulting in subsequent 
crack growth nearly orthogonal to the horizontally oriented 
specimen axis. In this section the growth rate reaches its 
upper limit of da∕dN = 1.5 ⋅ 10−4 μm/cycle. A comparison 
of the upper crack path in the transgranular section (in G1) 
with potential slip planes indicated that some of the col-
linear crack segments with distinct directions approximately 
coincide with the potential {110}[111] trace orientations. 
The slip plane traces of the {110}, {112} and {123} slip 
plane families are provided in the Supplemental documents. 
The crack observed in the lower crack part is retarded when 
the intercrystalline crack at the G1-G2 boundary meets the 
G1-G2-G3 triple point and transitions into a transcrystalline 
crack in G3 (Fig. 11(b) #4) and when the crack transitions 
trough the G3-G4 border (Fig. 11(b) #5).

The growth of microstructurally short fatigue cracks 
has been studied in the literature extensively. Typically, 
microstructurally short crack growth is described as a 
slip-assisted process occurring in specific crystallographic 
directions (slip systems) [50–52]. This could be confirmed 
for the considered crack through a slip plane trace study. 
There are multiple reported crack retardation mechanisms, 
including crack branching [53] and impingement of the 
crack tip at grain or phase boundaries. Latter is some-
times associated with crack redirection or crack tip blunt-
ing through the dissemination of dislocations [54]. This 
blunting can be hampered by back stresses originating 
from dislocation pile-ups ahead of the crack tip [54]. The 
transition from the intergranular to the transgranular crack 
in the upper section (Fig. 11(a) #1) is potentially ascribed 
to the sharp GB trace direction change from approximately 
orthogonal to approximately parallel to the specimen axis. 
This transition is linked with a crack arrest which might 
occur due to crack reorientation to a specific slip plane 
when entering the transgranular mode. While propagating 
through G1, intermittent crack propagation (Fig. 11(a) #2, 
#3) occurs despite the absence of surface defects. How-
ever, retardation instance #2 is accompanied by a crack 
direction change towards the normal of the specimen 
axis. Such a behavior is often linked with the transition 
to macroscopic crack growth (stage II) [55]. Indeed, this 

Fig. 10  Subfigures  10(a)–l represent a time series of intensity evo-
lution ascribed to topography changes from slip trace and crack for-
mation and growth superimposed with an inverse polefigure map. 
The numerical value at the top of each image represents the corre-
sponding cycle number at which the image was captured in [ ⋅106 ]. In 
Fig.  10(m) a multi-class segmentation map with cracks (green) and 
extrusions (blue) is shown, which was downsampled to the resolution 
of the EBSD. These are complemented with two SEM images cap-
tured prior to Fig. 10(n) and after fatigue 10(o). The SEM image prior 
fatigue contains grain numbers and the image after an illustration of 
the stages in the crack growth, where blue arrows indicate crack ini-
tiation locations and black arrows indicate crack growth. Moreover, 
green arrows point out a loop shaped plasticity trace

Fig. 11  Cyclic crack length evolution demonstrating five instances of 
crack growth retardation. The insets 1–5 show the states at which the 
growth was retarded due to different phenomenons. A pair of dotted 
vertical lines indicate the run-up of the fatigue amplitude
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transition occurs at shorter absolute crack length in min-
iaturized specimen [56]. Another explanation could be 
crack interaction with interfaces or redirection towards 
stress concentrations that reside subsurface. Further, it is 
noteworthy that presumably during crack growth, a plas-
ticity trace loop develops annotated by the green arrows in 
Fig. 10(o). Since there was no in-situ intensity elevation 
observed corresponding to this surface plasticity, its cyclic 
emergence can not be traced back. However, it can be ten-
tatively assumed that dislocations emitted from the crack’s 
plastic zone interacted with the G1-G6 grain boundary 
amongst others and thereby affected the crack growth.

From this study, it can be deduced that these data sets 
facilitate investigation on how specific microstructural fea-
tures affect the stage I crack growth. Moreover, the accumu-
lation of surface plasticity can be investigated, which was 
not shown here. However, the formation of surface plasticity 
and crack growth are fundamentally different at the mecha-
nistic level, and hence their corresponding elevated intensi-
ties regions in the in-situ images evolve differently. While 
surface plasticity such as extrusions and, to some extent, 
protrusions are comparatively localized and can be charac-
terized through their topographic evolution, cracks exhibit 
directional growth. This has the consequence that different 
metrics are required to measure both phenomenons. In case 
of surface plasticity, the pixel accumulated intensity metric 
(“Characterization of In-Situ Imaging”) is appropriate in 
most cases. From evaluating the cyclic accumulated inten-
sity growth, it can be inferred that comparatively localized 
extrusions or protrusions exhibit an abrupt growth, which 
terminates within ΔN ≈ 2 ⋅ 106 cycles after reaching the 
target angular rotation amplitude under these loading con-
ditions. In contrast, cracks do show pronounced variance in 
their growth behavior and directional propagation. There-
fore, the accumulated intensity metric is inadequate in crack 
propagation analysis since growth direction information is 
omitted and temporary crack arrests are concealed. For the 
purpose of a crack analysis, morphological image operations 
are required after segmentation to estimate the crack length. 
The deep learning predicted segmentation mask derived 
from SEM after fatigue (e.g., Fig. 10(m)) assists not only in 
automated distinction of damage types and hence the deci-
sion of which damage metric to apply but also improves seg-
mentation quality and connectivity assessment. In the future, 
the superimposed SEM data and damage maps can assist in 
identifying intensity contributions from cracks and surface 
plasticity in the in-situ images. Prospectively, a segmenta-
tion network can be trained directly on the in-situ images 
utilizing the high fidelity annotations provided from SEM. 
While these analyses were conducted on individual instances 
of cracks and protrusions, the proposed methodology to 
establish data set is predestined for statistical analyzes.

By virtue of combination of

– a large field of view
– easily accessible testing up to the VHCF regime
– temporally high resolved detection of damage nucleation 

and crack growth despite the comparatively high resonant 
frequencies

– dataset multimodality
– high degree of workflow automation facilitated though 

deep learning-based damage detection, semi-automated 
multimodal registration, and microstructure analysis scripts

these datasets can provide means for data mining to find 
microstructural dependencies of HCF and VHCF damage 
evolution. Especially in these fatigue regimes, damage 
instances are scarce and arise only at critical microstruc-
ture configurations. To address this, datasets entailing few 
thousands of gains (where the damaged portion is loading-
dependent) can be acquired within a week of testing and 
post-processing, majority of which is spent during cyclic 
loading. Therefore, prospectively, this data can be utilized 
in multilayer perceptrons, convolutional approaches, graph 
convolutional networks or combinations thereof to predict 
damage emergence or 2D microstructural crack growth 
paths. Recurrent neural networks can be employed to predict 
the kinetics of damage evolution.

Conclusions & Outlook

A workflow was developed that enables the efficient creation 
of multimodal fatigue crack initiation and growth data sets. 
The resulting data sets combine microstructural informa-
tion with spatially resolved damage evolution information. 
The in-situ imaging captures the formation of damage with 
unprecedented temporal resolution despite high frequency 
cycling. These data sets are attained by linking a custom 
fatigue setup with post-processing methods, including deep 
learning semantic segmentation of damage locations, regis-
tration of heterogeneous image data, and data fusion.

This renders the data suitable to validate micromechani-
cal simulation models. As damage locations are semantically 
segmented by deep learning, these data sets complement 
existing HR-DIC-based validation approaches. The deep 
learning semantic segmentation approach enables access to 
statistical validation of extrusion and crack formation events 
while complementary strain fields and slip bands can be 
obtained from HR-DIC. Apart from numerical modeling, 
these quantitative data sets can promote the development of 
data-driven modeling and data mining of microstructure-
dependent extrusion formation and crack initiation. Here 
the availability of a considerable data quantity is a crucial 
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prerequisite. This applies in particular due to the probabil-
istic nature of VHCF fatigue, since comprehensive descrip-
tions of all influence factors are inaccessible. To this end, the 
high degree of automation of the workflow, high-frequency 
cycling, and the amount of corrected microstructure data can 
compensate for the inherent scarcity of damage formation in 
the VHCF regime to provide statistically meaningful data. 
This might enable to identify more correlations between 
degradation mechanisms and microstructural features.

The proposed workflow is assumed to apply to a multi-
tude of materials with minimal grain sizes in the order of a 
few microns. The availability of damage data from diverse 
materials reported in [18] should allow the training of deep 
learning damage localization models for alternate material 
domains with minimal additional effort. In the future, we 
aim to further increase the degree of automation and gen-
eralizability through advanced registration methodologies 
that avoid the manual selection of point correspondences. 
Thereby we aspire to enable data-driven studies for a wide 
range of alloys irrespective of their specific characteristics.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Eickenbusch H, Krauss O (2014) Werkstoffinnovationen für nach-
haltige Mobilität und Energieversorgung. Verein Deutscher Ing-
enieure e. V, Technical report

 2. National Science and Technology Council (US) (2011) Materials 
genome initiative for global competitiveness. Executive Office of 
the President, National Science and Technology Council

 3. O’Meara S (2019) Materials science is helping to transform China 
into a high-tech economy. Nature 567(7748):S1

 4. Innovations-Plattform MaterialDigital. https:// www. mater ialdi gital. 
de/, visted 2021-05-09. 

 5. Pierson K, Rahman A, Spear AD (2019) Predicting Microstructure-
Sensitive Fatigue-Crack Path in 3D Using a Machine Learning 
Framework. Jom 71(8):2680–2694

 6. Rovinelli A, Sangid MD, Proudhon H, Ludwig W (2018) Using 
machine learning and a data-driven approach to identify the small 
fatigue crack driving force in polycrystalline materials. Comput 
Mater 4(1):1–10

 7. Ås SK, Skallerud B, Tveiten BW (2008) Surface roughness char-
acterization for fatigue life predictions using finite element analy-
sis. Int J Fatigue 30(12):2200–2209

 8. Zeghadi A, N’guyen F, Forest S, Gourgues A-F, Bouaziz O (2007) 
Ensemble averaging stress–strain fields in polycrystalline aggre-
gates with a constrained surface microstructure–Part 1: Aniso-
tropic elastic behaviour. Philos Mag 87(8–9):1401–1424

 9. Proudhon H, Guéninchault N, Forest S, Ludwig W (2018) Incipi-
ent bulk polycrystal plasticity observed by synchrotron in-situ 
topotomography. Materials 11(10):1–18

 10. Naragani D, Sangid MD, Shade PA, Schuren JC, Sharma H, Park 
JS, Kenesei P, Bernier JV, Turner TJ, Parr I (2017) Investigation 
of fatigue crack initiation from a non-metallic inclusion via high 
energy x-ray diffraction microscopy. Acta Mater 137:71–84

 11. Spear AD, Li SF, Lind JF, Suter RM, Ingraffea AR (2014) Three-
dimensional characterization of microstructurally small fatigue-
crack evolution using quantitative fractography combined with 
post-mortem X-ray tomography and high-energy X-ray diffraction 
microscopy. Acta Mater 76:413–424

 12. Renversade L, Quey R, Ludwig W, Menasche D, Maddali S, Suter 
RM, Borbely A (2016) Comparison between diffraction contrast 
tomography and high-energy diffraction microscopy on a slightly 
deformed aluminium alloy. IUCrJ 3(1):32–42

 13. Miao J, Pollock TM, Wayne Jones J (2012) Microstructural 
extremes and the transition from fatigue crack initiation to small 
crack growth in a polycrystalline nickel-base superalloy. Acta 
Mater 60(6–7):2840–2854

 14. Batista MN, Marinelli MC, Alvarez-Armas I (2019) Effect of initial 
microstructure on surface relief and fatigue crack initiation in AISI 410 
ferritic-martensitic steel. Fatigue Fract Eng Mater Struct 42(1):61–68

 15. Chen B, Jiang J, Dunne FP (2018) Is stored energy density the 
primary meso-scale mechanistic driver for fatigue crack nuclea-
tion? Int J Plast 101:213–229

 16. Straub T, Berwind MF, Kennerknecht T, Lapusta Y, Eberl C 
(2015) Small-scale multiaxial setup for damage detection into 
the very high cycle fatigue regime. Exp Mech 55(7):1285–1299

 17. Buck M, Straub T, Eberl C (2018) Experimental investigation of 
damage detection and crack initiation up to the very high cycle 
fatigue regime. In Fatigue of Materials at Very High Numbers of 
Loading Cycles. Springer 365–393

 18. Thomas A, Durmaz AR, Straub T, Eberl C (2020) Automated 
quantitative analyses of fatigue-induced surface damage by deep 
learning. Materials 13(15):3298

 19. Bachmann F, Hielscher R, Schaeben H (2011) Grain detection 
from 2d and 3d EBSD data-Specification of the MTEX algorithm. 
Ultramicroscopy 111(12):1720–1733

 20. Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis 
with MTEX- Free and open source software toolbox. Solid State 
Phenom 160:63–68

 21. Nolze G (2006) Geometrically caused image distortion effects and 
their influence on interpretation of EBSD measurements. Mater 
Sci Technol 22(11):1343–1351

 22. Ram F, Zaefferer S, Jäpel T, Raabe D (2015) Error analysis of the 
crystal orientations and disorientations obtained by the classical elec-
tron backscatter diffraction technique. J Appl Crystallogr 48:797–813

 23. Nolze G (2007) Image distortions in SEM and their influences on 
EBSD measurements. Ultramicroscopy 107(2–3):172–183

 24. Kapur JP, Casasent DP (2000) Geometric correction of sem 
images. In Hybrid Image and Signal Processing VII, International 
Society for Optics and Photonics 4044:165–176

 25. Wu C, Adams B, Bauer C, Casasent D, Morawiec A, Ozdemir S, 
Talukder A (2002) Mapping the mesoscale interface structure in 
polycrystalline materials. Ultramicroscopy 93(2):99–109

 26. Kammers AD, Daly S (2013) Self-assembled nanoparticle surface 
patterning for improved digital image correlation in a scanning 
electron microscope. Exp Mech 53(8):1333–1341

http://creativecommons.org/licenses/by/4.0/
https://www.materialdigital.de/
https://www.materialdigital.de/


 Experimental Mechanics

 27. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal 
stitching of tiled 3D microscopic image acquisitions. Bioinfor-
matics 25(11):1463–1465

 28. Maraghechi S, Hoefnagels JP, Peerlings RH, Rokoš O, Geers MG 
(2019) Correction of scanning electron microscope imaging artifacts 
in a novel digital image correlation framework. Exp Mech 489–516

 29. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional 
networks for biomedical image segmentation. In International 
Conference on Medical image computing and computer-assisted 
intervention. Springer 234–241

 30. Smith C (2013) Two microscopes are better than one. Nature 
492:293–97

 31. Gomes ODFM (2016) Multimodal microscopy : automatic regis-
tration of images from optical microscopy and SEM using Fiji / 
ImageJ. X Stermat 60–63

 32. Goshtasby AA (2005) 2-D and 3-D Image registration: for medical, 
remote sensing, and industrial applications. John Wiley & Sons

 33. Gomes ODFM, Paciornik S (2012) Multimodal microscopy for 
ore characterization. In scanning electron microscopy. IntechOpen

 34. Britz D, Webel J, Gola J, Mücklich F (2017) A correlative 
approach to capture and quantify substructures by means of image 
registration. Prakt Metallogr 54(10):685–696

 35. Lowe DG (1999) Object recognition from local scale-invariant 
features. Proceedings of the IEEE International Conference on 
Computer Vision 2:1150–1157

 36. Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank 
W (2001) Nonrigid multimodality image registration. In 
M.  Sonka and K.  M. Hanson, editors, Medical Imaging 
2001: Image Processing. International Society for Optics and 
Photonics 4322:1609–1620

 37. Nandish S, Prabhu G, Rajagopal KV (2017) Multiresolution image 
registration for multimodal brain images and fusion for better neu-
rosurgical planning. Biomed J 40(6):329–338

 38. Sorzano CÓS, Thévenaz P, Unser M (2005) Elastic registration of 
biological images using vector-spline regularization. IEEE Trans 
Biomed Eng 52(4):652–663

 39. Szeliski R, Shum HY (1996) Motion estimation with quadtree 
splines. IEEE Trans Pattern Anal Mach Intell 18(12):1199–1210

 40. Jünger F, Olshausen PV, Rohrbach A (2016) Fast, label-free super-
resolution live-cell imaging using rotating coherent scattering 
(ROCS) microscopy. Sci Rep 6:1–11

 41. Zhang L-L, Fei Y-H, Liu X-Y, Li M-X et al (2016) On the for-
mation mechanisms of fine granular area (fga) on the fracture 
surface for high strength steels in the vhcf regime. Int J Fatigue 
82:402–410

 42. Ma K, Wang J, Singh V, Tamersoy B, Chang YJ, Wimmer A, 
Chen T (2017) Multimodal image registration with deep con-
text reinforcement learning. In International Conference on 
Medical Image Computing and Computer-Assisted Intervention. 
Springer 240–248

 43. Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang 
G, Bandula S, Moore CM, Emberton M, Ourselin S, Noble JA, 
Barratt DC, Vercauteren T (2018) Weakly-supervised convolu-
tional neural networks for multimodal image registration. Med 
Image Anal 49:1–13

 44. Rollett AD, Lebensohn RA, Groeber M, Choi Y, Li J, Rohrer GS 
(2010) Stress hot spots in viscoplastic deformation of polycrystals. 
Model Simul Mater Sci Eng 18(7)

 45. Lewis AC, Suh C, Stukowski M, Geltmacher AB, Rajan K, Spanos 
G (2008) Tracking correlations between mechanical response and 
microstructure in three-dimensional reconstructions of a commer-
cial stainless steel. Scr Mater 58(7):575–578

 46. Schaeben H (1997) A simple standard orientation density func-
tion: The hyperspherical de la Vallée Poussin kernel. Phys Status 
Solidi B 200(2):367–376

 47. McDowell DL, Dunne FPE (2010) Microstructure-sensitive 
computational modeling of fatigue crack formation. Int J Fatigue 
32(9):1521–1542

 48. Franciosi P, Le LT, Monnet G, Kahloun C, Chavanne MH (2015) 
Investigation of slip system activity in iron at room temperature 
by SEM and AFM in-situ tensile and compression tests of iron 
single crystals. Int J Plast 65:226–249

 49. Cereceda D, Diehl M, Roters F, Raabe D, Perlado JM, Marian 
J (2016) Unraveling the temperature dependence of the yield 
strength in single-crystal tungsten using atomistically-informed 
crystal plasticity calculations. Int J Plast 78:242–265

 50. Laird C (1967) The influence of metallurgical structure on the 
mechanisms of fatigue crack propagation. In Fatigue crack propa-
gation, ASTM International

 51. Neumann P (1969) Coarse slip model of fatigue. Acta Metall 
17(9):1219–1225

 52. Neumann P (1974) The geometry of slip processes at a propagat-
ing fatigue crack II. Acta Metall 22(9):1167–1178

 53. Korda AA, Mutoh Y, Miyashita Y, Sadasue T, Mannan SL 
(2006) In situ observation of fatigue crack retardation in banded 
ferrite-pearlite microstructure due to crack branching. Scr Mater 
54(11):1835–1840

 54. Ovid’ko IA, Sheinerman AG (2009) Grain size effect on crack 
blunting in nanocrystalline materials. Scr Mater 60(8):627–630

 55. Swenson DO (1969) Transition between stage I and stage II modes 
of fatigue crack growth. J Appl Phys 40(9):3467–3475

 56. Grünewald P, Rauber J, Marx M, Motz C, Schaefer F (2020) 
Fatigue crack growth in micro specimens as a tool to measure 
crack-microstructure interactions. Fatigue Fract Eng Mater Struct 
43(12):3037–3049

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Efficient Experimental and Data-Centered Workflow for Microstructure-Based Fatigue Data
	Abstract
	Background 
	Objective 
	Methods 
	Results 
	Conclusions 

	Introduction
	Experimental and Methods
	Workflow Description
	Specimen Fabrication and Characterization
	Fatigue of Mesoscale Specimen
	Data-Driven Localization of Fatigue Damage
	Multimodal Image Registrations

	Results and Discussion
	Characterization of In-Situ Imaging
	Validation of Registration Methodology
	Fatigue Damage Evolution Analysis

	Conclusions & Outlook
	References


