10 research outputs found

    The Searsville Lake Site (California, USA) as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series

    Get PDF
    Cores from Searsville Lake within Stanford University’s Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372–374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1–2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer, and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. PLAIN WORD SUMMARY: The Global Boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities–the damming of a watershed–that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide

    Global fingerprint of humans on the distribution of Bartonella bacteria in mammals.

    No full text
    As humans move and alter habitats, they change the disease risk for themselves, their commensal animals and wildlife. Bartonella bacteria are prevalent in mammals and cause numerous human infections. Understanding how this genus has evolved and switched hosts in the past can reveal how current patterns were established and identify potential mechanisms for future cross-species transmission. We analyzed patterns of Bartonella transmission and likely sources of spillover using the largest collection of Bartonella gltA genotypes assembled, including 67 new genotypes. This pathogenic genus likely originated as an environmental bacterium and insect commensal before infecting mammals. Rodents and domestic animals serve as the reservoirs or at least key proximate host for most Bartonella genotypes in humans. We also find evidence of exchange of Bartonella between phylogenetically distant domestic animals and wildlife, likely due to increased contact. Care should be taken to avoid contact between humans, domestic animals and wildlife to protect the health of all

    Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (<i>Thomomys</i> spp.) Distributions

    Get PDF
    <div><p>Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (<i>Thomomys</i> spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, <i>Thomomys</i> or <i>Megascapheus</i>, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus <i>Megascapheus</i> allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus <i>Thomomys</i> with subgenus <i>Megascapheus</i> occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure.</p></div

    The Searsville Lake Site (California, USA) as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series

    No full text
    Cores from Searsville Lake within Stanford University’s Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372–374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1–2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer, and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene.ISSN:2053-0196ISSN:2053-020

    Relationship Among a Supernova, a Transition of Polarity of the Geomagnetic Field and the Pliocene-Pleistocene Boundary

    No full text
    After the Middle Miocene, two important climatic changes took place, consisting mainly of cooling in both hemispheres. One occurred between 7.0 and 5.4 Ma and another at the end of the Pliocene, which marked the beginning of the Pleistocene in approximately 2.58 Ma. The proposal of thispresentation is to analyze diverse forcings of these climatic changes, such as the influence of the joint occurrence of reversions of the geomagnetic field andexplosions of a supernova. These events occurred coincidentally with thecooling of Earth. Also, biological changes in those time intervals are analyzed,especially the evolution of the Hominins since the oldest hominin fossils. Thecharacteristics of the Galactic Cosmic Rays, its influence on the climate and its potential mutogenetic effect were taken into account.Briefly, according to our analysis, it seems to be evident that together withother factors, the joint occurrence of the explosion of a supernova at less than100 pc from the Earth and the weakening and/or reversion of the GeomagneticField was an important factor that promoted these two climatic and ecosystemchanges.Fil: Compagnucci, Rosa Hilda. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orgeira, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Sinito, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cappellotto, Luiggina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Plastani, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    what Price Water Marketing?.

    No full text
    corecore