58 research outputs found
Scalable and Cost Efficient Algorithms for Virtual CDN Migration
Virtual Content Delivery Network (vCDN) migration is necessary to optimize
the use of resources and improve the performance of the overall SDN/NFV-based
CDN function in terms of network operator cost reduction and high streaming
quality. It requires intelligent and enticed joint SDN/NFV migration algorithms
due to the evident huge amount of traffic to be delivered to end customers of
the network. In this paper, two approaches for finding the optimal and near
optimal path placement(s) and vCDN migration(s) are proposed (OPAC and HPAC).
Moreover, several scenarios are considered to quantify the OPAC and HPAC
behaviors and to compare their efficiency in terms of migration cost, migration
time, vCDN replication number, and other cost factors. Then, they are
implemented and evaluated under different network scales. Finally, the proposed
algorithms are integrated in an SDN/NFV framework. Index Terms: vCDN; SDN/NFV
Optimization; Migration Algorithms; Scalability Algorithms.Comment: 9 pages, 11 figures, 4 tableaux, conference Local Computer Networks
(LCN), class
Synthèse de réseaux à composantes connexes unicycliques
In this thesis, we use the polyhedral approach to solve combinatorial problems in telecommunications context. First, we introduce the problem of network design with unicyclic connected components. We recall that without other constraints, our problem is easy to solve, and we propose a study with new technical constraints. We start our study by adding constraints on the size of cycles. We aim to obtain unicyclic components such that the size of each cycle is not lower than a certain p. This problem is NP-Hard. We describe some valid inequalities for the design of unicyclic graphs with girth constraints. The faces induced by these valid inequalities are also studied. Some of them can be separated in polynomial time. A cutting plane algorithm based on these inequalities is implemented to solve the problem. Furthermore, we focus on a Steiner type problem, which consists in partitioning the graph to unicyclic components, such that some given vertices belong to a cycle. We prove then that our problem is easy to solve, and we propose an exact extended formulation and a partial description of the convex hull of the incidence vectors of our Steiner network problem. Polynomial time separation algorithms are described. One of them is a generalization of the Padberg&Rao algorithm to separate blossom inequalities. Other technical constraints are proposed such as degree constraints, a bound of the number of unicyclic components, constraints related to whether some given pairs of vertices belong to the same component or to different components. Finally, we study the spectra of two specified classes of unicyclic graphs.Cette thèse s'inscrit dans le domaine de l'optimisation combinatoire. Elle utilise l'approche polyèdrale pour résoudre des problèmes combinatoires qui se posent dans le contexte des réseaux de télécommunications. Nous introduisons et étudions le problème de synthèse de réseaux à composantes connexes unicycliques. Après avoir rappelé que le problème est facile à résoudre en absence d'autres contraintes, nous étudions de nouvelles variantes en intégrant de nouvelles contraintes techniques. Nous commençons par une contrainte portant sur la taille des cycles. Nous souhaitons interdire tous les cycles contenant au plus p sommets. Le problème est alors NP-Difficile. Des inégalités valides sont alors proposées pour ce problème. On montre sous des conditions bien précises que ces inégalités peuvent être des facettes. Plusieurs algorithmes polynomiaux ont été proposés pour la séparation des inégalités valides. Ces algorithme sont mis en oeuvre et des résultats numériques sont donnés. Nous nous focalisons par la suite sur un nouveau problème dit de Steiner consistant à partitionner un réseau en composantes unicycliques tout en imposant que certains sommets soient sur les cycles. On montre alors que ce problème est facile au sens de la complexité algorithmique en proposant un algorithme polynomial et une formulation étendue du problème. On présente également une description partielle de l'enveloppe convexe des vecteurs d'incidence de ces réseaux. La séparation des inégalités est également étudiée. Nous proposons notamment une généralisation de l'algorithme de Padberg-Rao pour séparer les inégalités Blossom. D'autres contraintes techniques sont prises en compte : contraintes de degrés, contrainte sur le nombre de composantes connexes, appartenance de certains sommets à une même composante connexe et enfin la séparation de certains sommets qui doivent être sur des composantes différentes. Enfin, nous faisons une étude spectrale de deux classes spécifiques de graphes unicycliques
Dynamic Resource Allocation in Clouds: Smart Placement with Live Migrations.
International audienc
On the design of networks with unicyclic connected components
Cette thèse s'inscrit dans le domaine de l'optimisation combinatoire. Elle utilise l'approche polyèdrale pour résoudre des problèmes combinatoires qui se posent dans le contexte des réseaux de télécommunications. Nous introduisons et étudions le problème de synthèse de réseaux à composantes connexes unicycliques. Après avoir rappelé que le problème est facile à résoudre en absence d'autres contraintes, nous étudions de nouvelles variantes en intégrant de nouvelles contraintes techniques. Nous commençons par une contrainte portant sur la taille des cycles. Nous souhaitons interdire tous les cycles contenant au plus p sommets. Le problème est alors NP-Difficile. Des inégalités valides sont alors proposées pour ce problème. On montre sous des conditions bien précises que ces inégalités peuvent être des facettes. Plusieurs algorithmes polynomiaux ont été proposés pour la séparation des inégalités valides. Ces algorithme sont mis en oeuvre et des résultats numériques sont donnés. Nous nous focalisons par la suite sur un nouveau problème dit de Steiner consistant à partitionner un réseau en composantes unicycliques tout en imposant que certains sommets soient sur les cycles. On montre alors que ce problème est facile au sens de la complexité algorithmique en proposant un algorithme polynomial et une formulation étendue du problème. On présente également une description partielle de l'enveloppe convexe des vecteurs d'incidence de ces réseaux. La séparation des inégalités est également étudiée. Nous proposons notamment une généralisation de l'algorithme de Padberg-Rao pour séparer les inégalités Blossom. D'autres contraintes techniques sont prises en compte : contraintes de degrés, contrainte sur le nombre de composantes connexes, appartenance de certains sommets à une même composante connexe et enfin la séparation de certains sommets qui doivent être sur des composantes différentes. Enfin, nous faisons une étude spectrale de deux classes spécifiques de graphes unicycliques.In this thesis, we use the polyhedral approach to solve combinatorial problems in telecommunications context. First, we introduce the problem of network design with unicyclic connected components. We recall that without other constraints, our problem is easy to solve, and we propose a study with new technical constraints. We start our study by adding constraints on the size of cycles. We aim to obtain unicyclic components such that the size of each cycle is not lower than a certain p. This problem is NP-Hard. We describe some valid inequalities for the design of unicyclic graphs with girth constraints. The faces induced by these valid inequalities are also studied. Some of them can be separated in polynomial time. A cutting plane algorithm based on these inequalities is implemented to solve the problem. Furthermore, we focus on a Steiner type problem, which consists in partitioning the graph to unicyclic components, such that some given vertices belong to a cycle. We prove then that our problem is easy to solve, and we propose an exact extended formulation and a partial description of the convex hull of the incidence vectors of our Steiner network problem. Polynomial time separation algorithms are described. One of them is a generalization of the Padberg&Rao algorithm to separate blossom inequalities. Other technical constraints are proposed such as degree constraints, a bound of the number of unicyclic components, constraints related to whether some given pairs of vertices belong to the same component or to different components. Finally, we study the spectra of two specified classes of unicyclic graphs
A Mathematical Programming Approach to Multi-Cloud Storage
International audienc
A mathematical programming approach for full coverage hole optimization in Cloud Radio Access Networks
International audienceThis paper proposes a Branch-and-Cut algorithm for network operators and providers to propose a full coverage hole in the context of Cloud Radio Access Networks (C-RAN). In this context, and to optimize the network coverage when reducing interferences, network operators need new algorithms that enable to consolidate and re-optimize the antennas radii. This paper provides an NP-Hardness complexity proof of the full coverage hole problem and proposes a deep Branch-and-Cut algorithm based on the description of new cutting planes to accelerate the convergence time even for large problem sizes. Simulation results and comparison to the state of the art highlight the eciency and the usefulness of our approach
A Virtual Machine Repacking in Clouds: Faster Live Migration Algorithms.
International audienc
A mathematical programming approach for full coverage hole optimization in Cloud Radio Access Networks
International audienceThis paper proposes a Branch-and-Cut algorithm for network operators and providers to propose a full coverage hole in the context of Cloud Radio Access Networks (C-RAN). In this context, and to optimize the network coverage when reducing interferences, network operators need new algorithms that enable to consolidate and re-optimize the antennas radii. This paper provides an NP-Hardness complexity proof of the full coverage hole problem and proposes a deep Branch-and-Cut algorithm based on the description of new cutting planes to accelerate the convergence time even for large problem sizes. Simulation results and comparison to the state of the art highlight the eciency and the usefulness of our approach
On Unicyclic Graphs Spectra : New Results
International audienceLet G = (V, E) be a unicyclic simple undirected graph. In this paper, we investigate the spectra of a particular class of unicyclic graphs G(q, n1) where q is the size of the unique cycle. Each vertex of the unique cycle is attached to n1 vertices. We provide the " exact values " of the extremal eigenvalues of the adjacency matrix A and the Laplacian matrix L of G, in contrast to lower and upper bounds reported in the literature
- …