9 research outputs found

    Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia

    Get PDF
    There is a growing concern about food security and sustainability of agricultural production in developing countries. However, there are limited attempts to quantify agro-biodiversity losses and relate these losses to soil degradation and crop productivity, particularly in Tigray, Ethiopia. In this study, spatial variation in agro-biodiversity and soil degradation was assessed in 2000 and 2005 at 151 farms in relation to farm, productivity, wealth, social, developmental and topographic characteristics in Tigray, northern Ethiopia. A significant decrease in agro-biodiversity was documented between 2000 and 2005, mainly associated with inorganic fertilizer use, number of credit sources and proximity to towns and major roads. Agro-biodiversity was higher at farms with higher soil fertility (available P and total N) and higher productivity (total caloric crop yield). Low soil organic matter, few crop selection criteria and steep slopes contributed to soil erosion. Sparsely and intensively cultivated land use types, as determined from satellite images, were associated with high and low agro-biodiversity classes, respectively, as determined during on-farm surveys in 2005. This study gives insight into the recent changes in and current status of agro-biodiversity and soil degradation at different spatial scales, which can help to improve food security through the maintenance of agro-biodiversity resource

    The role of trees in regulating soil erosion

    No full text
    In de Leeuw, J.; Njenga, M.; Wagner, B.; Iiyama, M. (Eds.) Treesilience: an assessment of the resilience provided by trees in the drylands of Eastern Africa. Nairobi, Kenya: World Agroforestry Centre (ICRAF

    Woody Plant Species Composition, Population Structure and Carbon Sequestration Potential of the A. senegal (L.) Willd Woodland Along a Distance Gradient in North-Western Tigray, Ethiopia

    No full text
    In Ethiopia, dry land vegetation including the fairly intact lowland and western escarpment woodlands occupy the largest vegetation resource of the country. These forests play a central role in environmental regulation and socio-economic assets, yet they received less scientific attention than the moist forests. This study evaluated the woody plant species composition, population structure and carbon sequestration potential of the A. senegal woodland across three distance gradients from the settlements. A total of 45 sample quadrants were laid along a systematically established nine parallel transect lines to collect vegetation and soil data across distance gradients from settlement. Mature tree dry biomass with DBH>2.5 cm was estimated using allometric equations. A total of 41 woody plant species that belong to 20 families were recorded and A. senegal was the dominant species with 56.4 IVI value. Woody plant species diversity, density and richness were significantly higher in the distant plots compared to the nearest plots to settlement (p<0.05). The cumulative DBH class distribution of all individuals had showed an interrupted inverted J-shape population pattern. There were 19 species without seedlings, 15 species without saplings and 14 species without both seedlings and saplings. A significant above ground carbon (5.3 to 12.7 ton ha-1), root carbon (1.6 to 3.6 ton ha-1), soil organic carbon (35.6 to 44.5 ton ha-1), total carbon stock (42.5 to 60.7 ton ha-1) and total carbon dioxide equivalent (157.7 to 222.8 ton ha-1) was observed consistently with an increasing of distance from settlement (p<0.05). Distance from settlement had significant and positive correlation with species diversity and carbon stock at 0.64⁎⁎ and 0.78⁎⁎. Disturbance intensity may directly influence the variation of species composition, richness and density along the A. senegal woodland. The sustainability of the A. senegal woodland needs urgent protection, conservation and restoration

    Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia

    Get PDF
    There is a growing concern about food security and sustainability of agricultural production in developing countries. However, there are limited attempts to quantify agro-biodiversity losses and relate these losses to soil degradation and crop productivity, particularly in Tigray, Ethiopia. In this study, spatial variation in agro-biodiversity and soil degradation was assessed in 2000 and 2005 at 151 farms in relation to farm, productivity, wealth, social, developmental and topographic characteristics in Tigray, northern Ethiopia. A significant decrease in agro-biodiversity was documented between 2000 and 2005, mainly associated with inorganic fertilizer use, number of credit sources and proximity to towns and major roads. Agro-biodiversity was higher at farms with higher soil fertility (available P and total N) and higher productivity (total caloric crop yield). Low soil organic matter, few crop selection criteria and steep slopes contributed to soil erosion. Sparsely and intensively cultivated land use types, as determined from satellite images, were associated with high and low agro-biodiversity classes, respectively, as determined during on-farm surveys in 2005. This study gives insight into the recent changes in and current status of agro-biodiversity and soil degradation at different spatial scales, which can help to improve food security through the maintenance of agro-biodiversity resource

    Farmer-led approaches to increasing tree diversity in fields and farmed landscapes in Ethiopia

    No full text
    Increasing tree cover and managing trees better on farms in Ethiopia supports livelihoods and the environment but most tree-planting schemes promote only a few species. This research aimed to understand farmers’ tree planting priorities in Oromia, Ethiopia and address challenges involved in meeting them. Tree species and planting niches were elicited through focus group discussions. Participatory trials compared 17 tree species across seven on-farm planting niches and seedling survival and growth patterns were evaluated. Farmers suggested a high diversity of tree species suitable for each niche with fruit species mainly selected for homesteads. The diversity of desired tree species is much higher than that typically available in nurseries or promoted by tree planting projects. Meeting planting demands was difficult because the existing seedling supply does not support diversity. Evaluation of tree survival showed striking differences among species, farms, agroecologies and planting niches. There was high variation in seedling survival amongst the tree species planted on 1893 farm/planting niche locations, indicating impact of local level risk factors attributable to management, biotic and abiotic causes. Growth differences of the six shared species common to both agroecologies across different niches, showed that the effects of species and niche were significant on growth. A farmer-led approach to increasing tree cover that couples understanding of species and planting niche preferences with appropriate seedling supply and management is proposed as a means to increase the diversity of trees in farmed landscapes

    Initial effects of fertilization and canopy management on flowering and seed and oil yields of Jatropha curcas L. in Malawi

    No full text
    Appropriate canopy management, including planting density and pruning, and application of fertilizer may increase flowering success and seed and oil yields of Jatropha curcasL.Twofieldexperimentswereperformedfrom2009to 2011 in Balaka, Malawi, to assess the effect of planting density and pruning regime and single fertilizer application (N, P, and K) on male and female flower number and seed and oil yields of J. curcas. Planting density influenced flower sex ratio and female flower number. Branch pruning treatments did not influence the flower sex ratio but reduced seed and final oil yield by 55 % in the following year. It is claimed that J.curcas can be grown on soils with low nutrient content, but this study revealed that yield was low for non-fertilized trees. WeobservedhigherseedandoilyieldsathigherNapplication rates(upto203±42%seedand204±45%oilyieldincrease) compared with the non-fertilized control. The study suggests thatcurrentlyusedheavypruningpracticeisnotrecommended for J.curcas cultivation, although it needs further longer term investigation. Applying nitrogen fertilizer is effective in increasing yield

    Initial effects of fertilization and canopy management on flowering and seed and oil yields of Jatropha curcas L. in Malawi

    No full text
    Appropriate canopy management, including planting density and pruning, and application of fertilizer may increase flowering success and seed and oil yields of Jatropha curcasL.Twofieldexperimentswereperformedfrom2009to 2011 in Balaka, Malawi, to assess the effect of planting density and pruning regime and single fertilizer application (N, P, and K) on male and female flower number and seed and oil yields of J. curcas. Planting density influenced flower sex ratio and female flower number. Branch pruning treatments did not influence the flower sex ratio but reduced seed and final oil yield by 55 % in the following year. It is claimed that J.curcas can be grown on soils with low nutrient content, but this study revealed that yield was low for non-fertilized trees. WeobservedhigherseedandoilyieldsathigherNapplication rates(upto203±42%seedand204±45%oilyieldincrease) compared with the non-fertilized control. The study suggests thatcurrentlyusedheavypruningpracticeisnotrecommended for J.curcas cultivation, although it needs further longer term investigation. Applying nitrogen fertilizer is effective in increasing yield

    Agroecological transformation for sustainable food systems : Insight on France-CGIAR research

    No full text
    This 26th dossier d’Agropolis is devoted to research and partnerships in agroecology. The French Commission for International Agricultural Research (CRAI) and Agropolis International, on behalf of CIRAD, INRAE and IRD and in partnership with CGIAR, has produced this new issue in the ‘Les dossiers d’Agropolis international’ series devoted to agroecology. This publication has been produced within the framework of the Action Plan signed by CGIAR and the French government on February 4th 2021 to strengthen French collaboration with CGIAR, where agroecology is highlighted as one of the three key priorities (alongside climate change, nutrition and food systems)
    corecore