45 research outputs found
Multicolor plate reader fluorescence calibration
Plate readers are commonly used to measure cell growth and fluorescence, yet the utility and reproducibility of plate reader data is limited by the fact that it is typically reported in arbitrary or relative units. We have previously established a robust serial dilution protocol for calibration of plate reader measurements of absorbance to estimated bacterial cell count and for green fluorescence from proteins expressed in bacterial cells to molecules of equivalent fluorescein. We now extend these protocols to calibration of red fluorescence to the sulforhodamine-101 fluorescent dye and blue fluorescence to Cascade Blue. Evaluating calibration efficacy via an interlaboratory study, we find that these calibrants do indeed provide comparable precision to the prior calibrants and that they enable effective cross-laboratory comparison of measurements of red and blue fluorescence from proteins expressed in bacterial cells
Comparative analysis of three studies measuring fluorescence from engineered bacterial genetic constructs
Reproducibility is a key challenge of synthetic biology, but the foundation of reproducibility is only as solid as the reference materials it is built upon. Here we focus on the reproducibility of fluorescence measurements from bacteria transformed with engineered genetic constructs. This comparative analysis comprises three large interlaboratory studies using flow cytometry and plate readers, identical genetic constructs, and compatible unit calibration protocols. Across all three studies, we find similarly high precision in the calibrants used for plate readers. We also find that fluorescence measurements agree closely across the flow cytometry results and two years of plate reader results, with an average standard deviation of 1.52-fold, while the third year of plate reader results are consistently shifted by more than an order of magnitude, with an average shift of 28.9-fold. Analyzing possible sources of error indicates this shift is due to incorrect preparation of the fluorescein calibrant. These findings suggest that measuring fluorescence from engineered constructs is highly reproducible, but also that there is a critical need for access to quality controlled fluorescent calibrants for plate readers
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Calibration Protocol - OD600 Inter-equipment Conversion with LUDOX v3
With this protocol you will use LUDOX CL-X (a 45% colloidal silica suspension) as a single point reference to obtain a conversion factor to transform absorbance (OD600) data from your plate reader into a comparable OD600 measurement as would be obtained in a spectrophotometer. This conversion is necessary because plate reader measurements of absorbance are volume dependent; the depth of the fluid in the well defines the path length of the light passing through the sample, which can vary slightly from well to well. In a standard spectrophotometer, the path length is fixed and is defined by the width of the cuvette, which is constant. Therefore this conversion calculation can transform OD600 measurements from a plate reader (i.e. absorbance at 600 nm, the basic output of most instruments) into comparable OD600 measurements. The LUDOX solution is only weakly scattering and so will give a low absorbance value. Protocol based on this Yeast Plate Count Protocol. </p
Permutation Machines
We
define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n – 1)·(n –
2)···2 = n! distinct orderings. We
present two design algorithms for architecting such a machine. We
define a notion of a feasible design and use the framework to discuss
the feasibility of the permuton architectures. We have implemented
our design algorithms in a freely usable web-accessible software for
exploration of these machines. Permutation machines could be used
as memory elements or state machines and explicitly illustrate a rational
approach to designing biological systems
Calibration Protocol - Conversion of OD600 to Colony Forming Units (CFUs) v2
This procedure can be used to calibrate OD600 to colony forming unit (CFU) counts, which are directly relatable to the cell concentration of the culture, i.e. viable cell counts per mL.   This protocol assumes that 1 bacterial cell will give rise to 1 colony. For the CFU protocol, you will need to count colonies for your two Positive Control (BBa_I20270) cultures and your two Negative Control (BBa_R0040) cultures. Protocol based on this Yeast Plate Count Protocol. </p
Calibration Protocol - Fluorescence Standard Curve with Fluorescein v1
Plate readers report fluorescence values in arbitrary units that vary widely from instrument to instrument. Therefore absolute fluorescence values cannot be directly compared from one instrument to another. In order to compare fluorescence output of test devices between teams, it is necessary for each team to create a standard fluorescence curve. Although distribution of a known concentration of GFP protein would be an ideal way to standardize the amount of GFP fluorescence in our E. coli cells, the stability of the protein and the high cost of its purification are problematic. We therefore use the small molecule fluorescein, which has similar excitation and emission properties to GFP, but is cost-effective and easy to prepare. (The version of GFP used in the devices, GFP mut3b, has an excitation maximum at 501 nm and an emission maximum at 511 nm; fluorescein has an excitation maximum at 494 nm and an emission maximum at 525nm).  You will prepare a dilution series of fluorescein in four replicates and measure the fluorescence in a 96 well plate in your plate reader. By measuring these in your plate reader, you will generate a standard curve of fluorescence for fluorescein concentration. You will be able to use this to convert your cell based readings to an equivalent fluorescein concentration. Before beginning this protocol, ensure that you are familiar with the GFP settings and measurement modes of your instrument. You will need to know what filters your instrument has for measuring GFP, including information about the bandpass width (530 nm / 30 nm bandpass, 25-30 nm width is recommended), excitation (485 nm is recommended) and emission (520-530 nm is recommended) of this filter.  Note: The iGEM Particle Standard Curve with Microspheres calibration method is a pre-requisite for carrying out this protocol. You will need data from that calibration to analyse the results of this protocol. </p
