1,077 research outputs found

    3D direct and inverse solvers for eddy current testing of deposits in steam generator

    Full text link
    We consider the inverse problem of estimating the shape profile of an unknown deposit from a set of eddy current impedance measurements. The measurements are acquired with an axial probe, which is modeled by a set of coils that generate a magnetic field inside the tube. For the direct problem, we validate the method that takes into account the tube support plates, highly conductive part, by a surface impedance condition. For the inverse problem, finite element and shape sensitivity analysis related to the eddy current problem are provided in order to determine the explicit formula of the gradient of a least square misfit functional. A geometrical-parametric shape inversion algorithm based on cylindrical coordinates is designed to improve the robustness and the quality of the reconstruction. Several numerical results are given in the experimental part. Numerical experiments on synthetic deposits, nearby or far away from the tube, with different shapes are considered in the axisymmetric configuration.Comment: 3

    On the asymptotics of a Robin eigenvalue problem

    Get PDF
    The considered Robin problem can formally be seen as a small perturbation of a Dirichlet problem. However, due to the sign of the impedance value, its associated eigenvalues converge point-wise to −∞-\infty as the perturbation goes to zero. We prove that in this case, Dirichlet eigenpairs are the only accumulation points of the Robin eigenpairs with normalized eigenvectors. We then provide a criteria to select accumulating sequences of eigenvalues and eigenvectors and exhibit their full asymptotic with respect to the small parameter

    Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures

    Get PDF
    A theoretical foundation is developed for active seismic reconstruction of fractures endowed with spatially-varying interfacial condition (e.g.~partially-closed fractures, hydraulic fractures). The proposed indicator functional carries a superior localization property with no significant sensitivity to the fracture's contact condition, measurement errors, and illumination frequency. This is accomplished through the paradigm of the F♯F_\sharp-factorization technique and the recently developed Generalized Linear Sampling Method (GLSM) applied to elastodynamics. The direct scattering problem is formulated in the frequency domain where the fracture surface is illuminated by a set of incident plane waves, while monitoring the induced scattered field in the form of (elastic) far-field patterns. The analysis of the well-posedness of the forward problem leads to an admissibility condition on the fracture's (linearized) contact parameters. This in turn contributes toward establishing the applicability of the F♯F_\sharp-factorization method, and consequently aids the formulation of a convex GLSM cost functional whose minimizer can be computed without iterations. Such minimizer is then used to construct a robust fracture indicator function, whose performance is illustrated through a set of numerical experiments. For completeness, the results of the GLSM reconstruction are compared to those obtained by the classical linear sampling method (LSM)

    A robust inversion method for quantitative 3D shape reconstruction from coaxial eddy-current measurements

    Get PDF
    This work is motivated by the monitoring of conductive clogging deposits in steam generator at the level of support plates. One would like to use monoaxial coils measurements to obtain estimates on the clogging volume. We propose a 3D shape optimization technique based on simplified parametrization of the geometry adapted to the measurement nature and resolution. The direct problem is modeled by the eddy current approximation of time-harmonic Maxwell's equations in the low frequency regime. A potential formulation is adopted in order to easily handle the complex topology of the industrial problem setting. We first characterize the shape derivatives of the deposit impedance signal using an adjoint field technique. For the inversion procedure, the direct and adjoint problems have to be solved for each coil vertical position which is excessively time and memory consuming. To overcome this difficulty, we propose and discuss a steepest descent method based on a fixed and invariant triangulation. Numerical experiments are presented to illustrate the convergence and the efficiency of the method

    A New Combined Framework for the Cellular Manufacturing Systems Design

    Get PDF
    Cellular Manufacturing (CM) system has been recognized as an efficient and effective way to improve productivity in a factory. In recent years, there have been continuous research efforts to study different facet of CM system. The literature does not contain much published research on CM design which includes all design aspects. In this paper we provide a framework for the complete CM system design. It combines Axiomatic Design (AD) and Experimental Design (ED) to generate several feasible and potentially profitable designs. The AD approach is used as the basis for establishing a systematic CM systems design structure. ED has been a very useful tool to design and analyze complicated industrial design problems. AD helps secure valid input-factors to the ED. An element of the proposed framework is desmontrate through a numerical example for cell formation with alternative process.Cellular manufacturing; Design methodology Axiomatic Design; Experimental Design.

    A Taguchi method application for the part routing selection in Generalized Group Technology: A case Study

    Get PDF
    Cellular manufacturing (CM) is an important application of group technology (GT) that can be used to enhance both flexibility and efficiency in today’s small-to-medium lot production environment. The crucial step in the design of a CM system is the cell formation (CF) problem which involves grouping parts into families and machines into cells. The CF problem are increasingly complicated if parts are assigned with alternative routings (known as generalized Group Technology problem). In most of the previous works, the route selection problem and CF problem were formulated in a single model which is not practical for solving large-scale problems. We suggest that better solution could be obtained by formulating and solving them separately in two different problems. The aim of this case study is to apply Taguchi method for the route selection problem as an optimization technique to get back to the simple CF problem which can be solved by any of the numerous CF procedures. In addition the main effect of each part and analysis of variance (ANOVA) are introduced as a sensitivity analysis aspect that is completely ignored in previous research.Cellular Manufacturing; generalized Group Technology; route selection problem; Taguchi method; ANOVA; sensitivity analysis
    • …
    corecore