19 research outputs found

    Tissue resident stem cells: till death do us part

    Get PDF
    Aging is accompanied by reduced regenerative capacity of all tissues and organs and dysfunction of adult stem cells. Notably, these age-related alterations contribute to distinct pathophysiological characteristics depending on the tissue of origin and function and thus require special attention in a type by type manner. In this paper, we review the current understanding of the mechanisms leading to tissue-specific adult stem cell dysfunction and reduced regenerative capacity with age. A comprehensive investigation of the hematopoietic, the neural, the mesenchymal, and the skeletal stem cells in age-related research highlights that distinct mechanisms are associated with the different types of tissue stem cells. The link between age-related stem cell dysfunction and human pathologies is discussed along with the challenges and the future perspectives in stem cell-based therapies in age-related diseases

    Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA.

    Get PDF
    INTRODUCTION: Detection and monitoring of circulating tumor DNA (ctDNA) is rapidly becoming a diagnostic, prognostic and predictive tool in cancer patient care. A growing number of gene targets have been identified as diagnostic or actionable, requiring the development of reliable technology that provides analysis of multiple genes in parallel. We have developed the InVision™ liquid biopsy platform which utilizes enhanced TAm-Seq™ (eTAm-Seq™) technology, an amplicon-based next generation sequencing method for the identification of clinically-relevant somatic alterations at low frequency in ctDNA across a panel of 35 cancer-related genes. MATERIALS AND METHODS: We present analytical validation of the eTAm-Seq technology across two laboratories to determine the reproducibility of mutation identification. We assess the quantitative performance of eTAm-Seq technology for analysis of single nucleotide variants in clinically-relevant genes as compared to digital PCR (dPCR), using both established DNA standards and novel full-process control material. RESULTS: The assay detected mutant alleles down to 0.02% AF, with high per-base specificity of 99.9997%. Across two laboratories, analysis of samples with optimal amount of DNA detected 94% mutations at 0.25%-0.33% allele fraction (AF), with 90% of mutations detected for samples with lower amounts of input DNA. CONCLUSIONS: These studies demonstrate that eTAm-Seq technology is a robust and reproducible technology for the identification and quantification of somatic mutations in circulating tumor DNA, and support its use in clinical applications for precision medicine

    Tissue resident stem cells: till death do us part

    Get PDF

    Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation

    No full text
    Microbial-induced calcite precipitation (MICP) is a soil amelioration technique aiming to mitigate different environmental and engineering concerns, including desertification, soil erosion, and soil liquefaction, among others. The hydrolysis of urea, catalyzed by the microbial enzyme urease, is considered the most efficient microbial pathway for MICP. Biostimulated MICP relies on the enhancement of indigenous urea-hydrolyzing bacteria by providing an appropriate enrichment and precipitation medium, as opposed to bioaugmentation, which requires introducing large volumes of exogenous bacterial cultures into the treated soil along with a growth and precipitation medium. Biostimulated MICP in desert soils is challenging as the total carbon content and the bacterial abundance are considerably low. In this study, we examined the biostimulation potential in soils from the Negev Desert, Israel, for the purpose of mitigation of topsoil erosion in arid environments. Incubating soil samples in urea and enrichment media demonstrated effective urea hydrolysis leading to pH increase, which is necessary for calcite precipitation. Biostimulation rates were found to increase with concentrations of energy (carbon) source in the stimulation media, reaching its maximal levels within 3 to 6 days. Following stimulation, calcium carbonate precipitation was induced by spiking stimulated bacteria in precipitation (CaCl2 enriched) media. The results of our research demonstrate that biostimulated MICP is feasible in the low-carbon, mineral soils of the northern Negev Desert in Israel

    Limiting Wind-Induced Resuspension of Radioactively Contaminated Particles to Enhance First Responder, Early Phase Worker and Public Safety—Part 1

    No full text
    An accidental radiological release or the operation of a radiological dispersal device (RDD) may lead to the contamination of a large area. Such scenarios may lead to health and safety risks associated with the resuspension of contaminated particles due to aeolian (wind-induced) soil erosion and tracking activities. Stabilization technologies limiting resuspension are therefore needed to avoid spreading contamination and to reduce exposures to first responders and decontamination workers. Resuspension testing was performed on soils from two sites of the Negev Desert following treatment with three different stabilization materials: calcium chloride, magnesium chloride, and saltwater from the Dead Sea in Israel. Two and six weeks post-treatment, resuspension was examined by inducing wind-driven resuspension and quantitatively measuring particle emission from the soils using a boundary-layer wind tunnel system. Experiments were conducted under typical wind velocities of this region. Treating the soils reduced resuspension fluxes of particulate matter 10) and saltating (sand-sized) particles to around background levels. Resuspension suppression efficiencies from the treated soils were a minimum of 94% for all three stabilizers, and the Dead Sea salt solution yielded 100% efficiency over all wind velocities tested. The impact of the salt solutions (brine) was directly related to the salt treatment rather than the wetting of the soils. Stabilization was still observed six weeks post-treatment, supporting that this technique can effectively limit resuspension for a prolonged duration, allowing sufficient time for decision making and management of further actions

    Translational Control of Protein Kinase Cη by Two Upstream Open Reading Frames ▿

    No full text
    Protein kinase C (PKC) represents a family of serine/threonine kinases that play a central role in the regulation of cell growth, differentiation, and transformation. Posttranslational control of the PKC isoforms and their activation have been extensively studied; however, not much is known about their translational regulation. Here we report that the expression of one of the PKC isoforms, PKCη, is regulated at the translational level both under normal growth conditions and during stress imposed by amino acid starvation, the latter causing a marked increase in its protein levels. The 5′ untranslated region (5′ UTR) of PKCη is unusually long and GC rich, characteristic of many oncogenes and growth regulatory genes. We have identified two conserved upstream open reading frames (uORFs) in its 5′ UTR and show their effect in suppressing the expression of PKCη in MCF-7 growing cells. While the two uORFs function as repressive elements that maintain low basal levels of PKCη in growing cells, they are required for its enhanced expression upon amino acid starvation. We show that the translational regulation during stress involves leaky scanning and is dependent on eIF-2α phosphorylation by GCN2. Our work further suggests that translational regulation could provide an additional level for controlling the expression of PKC family members, being more common than currently recognized

    Part 2: Stabilization/Containment of Radiological Particle Contamination to Enhance First Responder, Early Phase Worker, and Public Safety

    No full text
    The application of stabilization technologies to a radiologically contaminated surface has the potential for reducing the spread of contamination and, as a result, decreasing worker exposure to radiation. Three stabilization technologies, calcium chloride (CaCl2), flame retardant Phos-Chek® MVP-Fx, and Soil2OTM were investigated to evaluate their ability to reduce the resuspension and tracking of radiological contamination during response activities such as vehicle and foot traffic. Concrete pavers, asphalt pavers, and sandy soil walking paths were used as test surfaces, along with simulated fallout material (SFM) tagged with radiostrontium (Sr-85) applied as the contaminant. Radiological activities were measured using gamma spectrometry before and after simulated vehicle operation and foot traffic experiments, conducted with each stabilization technology and without application as a nonstabilized control. These measurements were acquired separately for each combination of surface and vehicle/foot traffic experiment. The resulting data describes the extent of SFM removed from each surface onto the tires or boots, the extent of SFM transferred to adjacent surfaces, and the residual SFM remaining on the tires or boots after each experiment. The type of surface and response worker actions influenced the stabilization results. For instance, when walked over, less than 2% of particles were removed from nonstabilized concrete, 4% from asphalt, and 40% of the particles were removed from the sand surface. By contrast, for vehicle experiments, ~40% of particles were again removed from the sand, but 7% and 15% from concrete and asphalt, respectively. In most cases, the stabilization technologies did provide improved stabilization. The improvement was related to the type of surface, worker actions, and stabilizer; a statistical analysis of these variables is presented. Overall, the results suggest an ability to utilize these technologies during the planning and implementation of response activities involving foot and vehicle traffic. In addition, resuspension of aerosolizable range SFM was monitored during walking path foot traffic experiments, and all stabilizing agents decreased the measured radioactivity, with the Soil2OTM decrease being 3 fold, whereas the CaCl2 and Phos-Chek MVP-Fx surfaces generated no detectable radioactivity. Overall, these results suggest that the stabilization technologies decrease the availability of particles respirable by response workers under these conditions

    Catalytic Pyrolysis of High-Density Polyethylene: Decomposition Efficiency and Kinetics

    No full text
    Organic waste is generally characterized by high volume-to-weight ratios, requiring implementation of waste minimization processes. In the present study, the decomposition of high-density polyethylene (HDPE), was studied under thermal and catalytic pyrolysis conditions on two experimental systems. Firstly, pyrolytic conditions for HDPE decomposition were optimized in a laboratory-scale batch reactor. In order to maximize gas yields and minimize secondary waste, the effects of aluminosilicate catalysts, catalyst loading, and reaction temperature on decomposition efficiency were examined. Secondly, kinetics and reaction temperatures were studied on a large capacity thermobalance, especially adjusted to perform experiments under pyrolytic conditions at a larger scale (up to 20 g). The addition of catalysts was shown to enhance polymer decomposition, demonstrated by higher gas conversions. Condensable yields could be further minimized by increasing the catalyst to polymer ratio from 0.1 to 0.2. The most prominent reduction in pyrolysis temperature was obtained over ZSM-5 catalysts with low Si/Al ratios; however, this impact was accompanied by a slower reaction rate. Of the zeolites tested, the ZSM-5 catalyst with a Si/Al of 25 was found to be the most efficient catalyst for waste minimization and organic destruction, leading to high gas conversions (~90 wt%.) and a 30-fold reduction in solid waste mass

    Fragment-Based NMR Study of the Conformational Dynamics in the bHLH Transcription Factor Ascl1.

    No full text
    International audienceThe Achaete-scute homolog 1 (Ascl1) protein regulates a large subset of genes that leads neuronal progenitor cells to distinctive differentiation pathways during human brain development. Although it is well known that Ascl1 binds DNA as a homo- or heterodimer via its basic helix-loop-helix (bHLH) motif, little is known about the conformational sampling properties of the DNA-free full-length protein, and in particular about the bHLH domain-flanking N- and C-terminal segments, which are predicted to be highly disordered in solution. The structural heterogeneity, low solubility, and high aggregation propensity of Ascl1 in aqueous buffer solutions make high-resolution studies of this protein a challenging task. Here, we have adopted a fragment-based strategy that allowed us to obtain high-quality NMR data providing, to our knowledge, the first comprehensive high-resolution information on the structural propensities and conformational dynamics of Ascl1. The emerging picture is that of an overall extended and highly dynamic polypeptide chain comprising three helical segments and lacking persistent long-range interactions. We also show that the C-terminal helix of the bHLH domain is involved in intermolecular interactions, even in the absence of DNA. Our results contribute to a better understanding of the mechanisms of action that govern the regulation of proneural transcription factors

    Catalytic Pyrolysis of High-Density Polyethylene: Decomposition Efficiency and Kinetics

    No full text
    Organic waste is generally characterized by high volume-to-weight ratios, requiring implementation of waste minimization processes. In the present study, the decomposition of high-density polyethylene (HDPE), was studied under thermal and catalytic pyrolysis conditions on two experimental systems. Firstly, pyrolytic conditions for HDPE decomposition were optimized in a laboratory-scale batch reactor. In order to maximize gas yields and minimize secondary waste, the effects of aluminosilicate catalysts, catalyst loading, and reaction temperature on decomposition efficiency were examined. Secondly, kinetics and reaction temperatures were studied on a large capacity thermobalance, especially adjusted to perform experiments under pyrolytic conditions at a larger scale (up to 20 g). The addition of catalysts was shown to enhance polymer decomposition, demonstrated by higher gas conversions. Condensable yields could be further minimized by increasing the catalyst to polymer ratio from 0.1 to 0.2. The most prominent reduction in pyrolysis temperature was obtained over ZSM-5 catalysts with low Si/Al ratios; however, this impact was accompanied by a slower reaction rate. Of the zeolites tested, the ZSM-5 catalyst with a Si/Al of 25 was found to be the most efficient catalyst for waste minimization and organic destruction, leading to high gas conversions (~90 wt%.) and a 30-fold reduction in solid waste mass
    corecore