4,208 research outputs found

    Ka-band Ga-As FET noise receiver/device development

    Get PDF
    The development of technology for a 30 GHz low noise receiver utilizing GaAs FET devices exclusively is discussed. This program required single and dual-gate FET devices, low noise FET amplifiers, dual-gate FET mixers, and FET oscillators operating at Ka-band frequencies. A 0.25 micrometer gate FET device, developed with a minimum noise figure of 3.3 dB at 29 GHz and an associated gain of 7.4 dB, was used to fabricate a 3-stage amplifier with a minimum noise figure and associated gain of 4.4 dB and 17 dB, respectively. The 1-dB gain bandwidth of this amplifier extended from below 26.5 GHz to 30.5 GHz. A dual-gate mixer with a 2 dB conversion loss and a minimum noise figure of 10 dB at 29 GHz as well as a dielectric resonator stabilized FET oscillator at 25 GHz for the receiver L0. From these components, a hybrid microwave integrated circuit receiver was constructed which demonstrates a minimum single-side band noise figure of 4.6 dB at 29 GHz with a conversion gain of 17 dB. The output power at the 1-dB gain compression point was -5 dBm

    Rainbow universe

    Get PDF
    The formalism of rainbow gravity is studied in a cosmological setting. We consider the very early universe which is radiation dominated. A novel treatment in our paper is to look for an ``averaged'' cosmological metric probed by radiation particles themselves. Taking their cosmological evolution into account, we derive the modified Friedmann-Robertson-Walker(FRW) equations which is a generalization of the solution presented by Magueijo and Smolin. Based on this phenomenological cosmological model we argue that the spacetime curvature has an upper bound such that the cosmological singularity is absent. These modified FRWFRW equations can be treated as effective equations in the semi-classical framework of quantum gravity and its analogy with the one recently proposed in loop quantum cosmology is also discussed.Comment: 5 page

    Wilson loops, geometric operators and fermions in 3d group field theory

    Full text link
    Group field theories whose Feynman diagrams describe 3d gravity with a varying configuration of Wilson loop observables and 3d gravity with volume observables at each vertex are defined. The volume observables are created by the usual spin network grasping operators which require the introduction of vector fields on the group. We then use this to define group field theories that give a previously defined spin foam model for fermion fields coupled to gravity, and the simpler quenched approximation, by using tensor fields on the group. The group field theory naturally includes the sum over fermionic loops at each order of the perturbation theory.Comment: 13 pages, many figures, uses psfra

    Particle Topology, Braids, and Braided Belts

    Full text link
    Recent work suggests that topological features of certain quantum gravity theories can be interpreted as particles, matching the known fermions and bosons of the first generation in the Standard Model. This is achieved by identifying topological structures with elements of the framed Artin braid group on three strands, and demonstrating a correspondence between the invariants used to characterise these braids (a braid is a set of non-intersecting curves, that connect one set of NN points with another set of NN points), and quantities like electric charge, colour charge, and so on. In this paper we show how to manipulate a modified form of framed braids to yield an invariant standard form for sets of isomorphic braids, characterised by a vector of real numbers. This will serve as a basis for more complete discussions of quantum numbers in future work.Comment: 21 pages, 16 figure

    Fusiform Rust Trends in East Texas: 1969-1987

    Get PDF
    Five surveys of pine plantations in East Texas over an 18-year period (1969-1987) indicated that fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme Birdsall and Snow) infection rates have increased to current levels of about 50% on slash pine (Pinus elliottii Engelm.) and are continuing to increase on loblolly pine (Pinus taeda L.) to 10-15% levels. South. J. Appl. For. 12(4):259-26

    Infinite Degeneracy of States in Quantum Gravity

    Full text link
    The setting of Braided Ribbon Networks is used to present a general result in spin-networks embedded in manifolds: the existence of an infinite number of species of conserved quantities. Restricted to three-valent networks the number of such conserved quantities in a given network is shown to be invariant barring a single case. The implication of these conserved quantities is discussed in the context of Loop Quantum Gravity.Comment: 10 pages, 14 figures, v2: some clarifications, no substantial change

    Asymptotic Flatness in Rainbow Gravity

    Full text link
    A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.Comment: 11 page

    Locality and Translations in Braided Ribbon Networks

    Get PDF
    An overview of microlocality in braided ribbon networks is presented. Following this, a series of definitions are presented to explore the concept of microlocality and the topology of ribbon networks. Isolated substructure of ribbon networks are introduced, and a theorem is proven that allows them to be relocated. This is followed by a demonstration of microlocal translations. Additionally, an investigation into macrolocality and the implications of invariants in braided ribbon networks are presented.Comment: 12 pages, 12 figure

    Asymptotic quasinormal modes of scalar field in a gravity's rainbow

    Full text link
    In the context of a gravity's rainbow, the asymptotic quasinormal modes of the scalar perturbation in the quantum modified Schwarzschild black holes are investigated. By using the monodromy method, we calculated and obtained the asymptotic quasinormal frequencies, which are dominated not only by the mass parameter of the spacetime, but also by the energy functions from the modified dispersion relations. However, the real parts of the asymptotic quasinormal modes is still THln3T_H\ln 3, which is consistent with Hod's conjecture. In addition, for the quantum corrected black hole, the area spacing is calculated and the result is independent of the energy functions, in spite of the area itself is energy dependence. And that, by relating the area spectrum to loop quantum gravity, the Barbero-Immirzi parameter is given and it remains the same as from the usual black hole
    corecore