319 research outputs found
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
Grouping practices in the primary school: what influences change?
During the 1990s, there was considerable emphasis on promoting particular kinds of pupil grouping as a means of raising educational standards. This survey of 2000 primary schools explored the extent to which schools had changed their grouping practices in responses to this, the nature of the changes made and the reasons for those changes. Forty eight percent of responding schools reported that they had made no change. Twenty two percent reported changes because of the literacy hour, 2% because of the numeracy hour, 7% because of a combination of these and 21% for other reasons. Important influences on decisions about the types of grouping adopted were related to pupil learning and differentiation, teaching, the implementation of the national literacy strategy, practical issues and school self-evaluation
Identification of the Pangenome and Its Components in 14 Distinct Aggregatibacter actinomycetemcomitans Strains by Comparative Genomic Analysis
Aggregatibacter actinomycetemcomitans is genetically heterogeneous and comprises distinct clonal lineages that may have different virulence potentials. However, limited information of the strain-to-strain genomic variations is available.The genome sequences of 11 A. actinomycetemcomitans strains (serotypes a-f) were generated de novo, annotated and combined with three previously sequenced genomes (serotypes a-c) for comparative genomic analysis. Two major groups were identified; serotypes a, d, e, and f, and serotypes b and c. A serotype e strain was found to be distinct from both groups. The size of the pangenome was 3,301 genes, which included 2,034 core genes and 1,267 flexible genes. The number of core genes is estimated to stabilize at 2,060, while the size of the pangenome is estimated to increase by 16 genes with every additional strain sequenced in the future. Within each strain 16.7-29.4% of the genome belonged to the flexible gene pool. Between any two strains 0.4-19.5% of the genomes were different. The genomic differences were occasionally greater for strains of the same serotypes than strains of different serotypes. Furthermore, 171 genomic islands were identified. Cumulatively, 777 strain-specific genes were found on these islands and represented 61% of the flexible gene pool.Substantial genomic differences were detected among A. actinomycetemcomitans strains. Genomic islands account for more than half of the flexible genes. The phenotype and virulence of A. actinomycetemcomitans may not be defined by any single strain. Moreover, the genomic variation within each clonal lineage of A. actinomycetemcomitans (as defined by serotype grouping) may be greater than between clonal lineages. The large genomic data set in this study will be useful to further examine the molecular basis of variable virulence among A. actinomycetemcomitans strains
Design of the PROCON trial: a prospective, randomized multi – center study comparing cervical anterior discectomy without fusion, with fusion or with arthroplasty
BACKGROUND: PROCON was designed to assess the clinical outcome, development of adjacent disc disease and costs of cervical anterior discectomy without fusion, with fusion using a stand alone cage and implantation of a Bryan's disc prosthesis. Description of rationale and design of PROCON trial and discussion of its strengths and limitations. METHODS/DESIGN: Since proof justifying the use of implants or arthroplasty after cervical anterior discectomy is lacking, PROCON was designed. PROCON is a multicenter, randomized controlled trial comparing cervical anterior discectomy without fusion, with fusion with a stand alone cage or with implantation of a disc. The study population will be enrolled from patients with a single level cervical disc disease without myelopathic signs. Each treatment arm will need 90 patients. The patients will be followed for a minimum of five years, with visits scheduled at 6 weeks, 3 months, 12 months, and then yearly. At one year postoperatively, clinical outcome and self reported outcomes will be evaluated. At five years, the development of adjacent disc disease will be investigated. DISCUSSION: The results of this study will contribute to the discussion whether additional fusion or arthroplasty is needed and cost effective. TRIAL REGISTRATION: Current Controlled Trials ISRCTN4168184
Co-Regulation of NF-κB and Inflammasome-Mediated Inflammatory Responses by Myxoma Virus Pyrin Domain-Containing Protein M013
NF-κB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1β and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-κB. The induction of these NF-κB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IκBα, which was followed by nuclear translocation of NF-κB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-κB-mediated reporter gene expression and nuclear translocation of NF-κB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-κB1, suggesting a direct physical and functional linkage between NF-κB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-κB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1β. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-κB-mediated pro-inflammatory responses
The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype?
IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner
High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria
Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special evolutionary course and transcriptional regulation of GI regions
Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia coli Species
Horizontal gene transfer is a key step in the evolution of bacterial pathogens. Besides phages and plasmids, pathogenicity islands (PAIs) are subjected to horizontal transfer. The transfer mechanisms of PAIs within a certain bacterial species or between different species are still not well understood. This study is focused on the High-Pathogenicity Island (HPI), which is a PAI widely spread among extraintestinal pathogenic Escherichia coli and serves as a model for horizontal transfer of PAIs in general. We applied a phylogenetic approach using multilocus sequence typing on HPI-positive and -negative natural E. coli isolates representative of the species diversity to infer the mechanism of horizontal HPI transfer within the E. coli species. In each strain, the partial nucleotide sequences of 6 HPI–encoded genes and 6 housekeeping genes of the genomic backbone, as well as DNA fragments immediately upstream and downstream of the HPI were compared. This revealed that the HPI is not solely vertically transmitted, but that recombination of large DNA fragments beyond the HPI plays a major role in the spread of the HPI within E. coli species. In support of the results of the phylogenetic analyses, we experimentally demonstrated that HPI can be transferred between different E. coli strains by F-plasmid mediated mobilization. Sequencing of the chromosomal DNA regions immediately upstream and downstream of the HPI in the recipient strain indicated that the HPI was transferred and integrated together with HPI–flanking DNA regions of the donor strain. The results of this study demonstrate for the first time that conjugative transfer and homologous DNA recombination play a major role in horizontal transfer of a pathogenicity island within the species E. coli
Update on cervical disc arthroplasty: where are we and where are we going?
Despite the very good results of anterior cervical discectomy and fusion, there are concerns of adjacent level degeneration. For this reason, interest has grown in the potential for motion sparing alternatives. Cervical disc arthroplasty is thus evolving as a potential alternative to fusion. Specific design characteristic and implants will be reviewed and outcomes summarized
The Defective Prophage Pool of Escherichia coli O157: Prophage–Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants
Bacteriophages are major genetic factors promoting horizontal gene transfer (HGT) between bacteria. Their roles in dynamic bacterial genome evolution have been increasingly highlighted by the fact that many sequenced bacterial genomes contain multiple prophages carrying a wide range of genes. Enterohemorrhagic Escherichia coli O157 is the most striking case. A sequenced strain (O157 Sakai) possesses 18 prophages (Sp1–Sp18) that encode numerous genes related to O157 virulence, including those for two potent cytotoxins, Shiga toxins (Stx) 1 and 2. However, most of these prophages appeared to contain multiple genetic defects. To understand whether these defective prophages have the potential to act as mobile genetic elements to spread virulence determinants, we looked closely at the Sp1–Sp18 sequences, defined the genetic defects of each Sp, and then systematically analyzed all Sps for their biological activities. We show that many of the defective prophages, including the Stx1 phage, are inducible and released from O157 cells as particulate DNA. In fact, some prophages can even be transferred to other E. coli strains. We also show that new Stx1 phages are generated by recombination between the Stx1 and Stx2 phage genomes. The results indicate that these defective prophages are not simply genetic remnants generated in the course of O157 evolution, but rather genetic elements with a high potential for disseminating virulence-related genes and other genetic traits to other bacteria. We speculate that recombination and various other types of inter-prophage interactions in the O157 prophage pool potentiate such activities. Our data provide new insights into the potential activities of the defective prophages embedded in bacterial genomes and lead to the formulation of a novel concept of inter-prophage interactions in defective prophage communities
- …
