38 research outputs found

    Chemische eiwitsynthese in beeld

    Get PDF

    Structure-function of anticoagulant TIX-5, the inhibitor of factor Xa-mediated FV activation

    Get PDF
    Background The prothrombinase complex consists of factors Xa (FXa) and Va (FVa) on an anionic phospholipid surface and converts prothrombin into thrombin. Both coagulation factors require activation before complex assembly. We recently identified TIX-5, a unique anticoagulant tick protein that specifically inhibits FXa-mediated activation of FV. Because TIX-5 inhibited thrombin generation in blood plasma, it was concluded that FV activation by FXa contributes importantly to coagulation.Objective We aimed to unravel the structure-function relationships of TIX-5.Method We used a structure model generated based on homology with the allergen Der F7.Results Tick inhibitor of factor Xa toward FV was predicted to consist of a single rod formed by several beta sheets wrapped around a central C-terminal alpha helix. By mutagenesis we could show that two hydrophobic loops at one end of the rod mediate the phospholipid binding of TIX-5. On the other end of the rod an FV interaction region was identified on one side, whereas on the other side an EGK sequence was identified that could potentially form a pseudosubstrate of FXa. All three interaction sites were important for the anticoagulant properties of TIX-5 in a tissue factor-initiated thrombin generation assay as well as in the inhibition of FV activation by FXa in a purified system.Conclusion The structure-function properties of TIX-5 are in perfect agreement with a protein that inhibits the FXa-mediated activation on a phospholipid surface. The present elucidation of the mechanism of action of TIX-5 will aid in deciphering the processes involved in the initiation phase of blood coagulation.Thrombosis and Hemostasi

    Antisense-Mediated Down-Regulation of Factor V-Short Splicing in a Liver Cell Line Model

    No full text
    Coagulation factor V (FV) is a liver-derived protein encoded by the F5 gene. Alternative splicing of F5 exon 13 produces a low-abundance splicing isoform, known as FV-short, which binds the anticoagulant protein tissue factor pathway inhibitor (TFPIα) with high affinity, stabilising it in the circulation and potently enhancing its anticoagulant activity. Accordingly, rare F5 gene mutations that up-regulate FV-short splicing are associated with bleeding. In this study we have explored the possibility of decreasing FV-short splicing by antisense-based splicing modulation. To this end, we have designed morpholino antisense oligonucleotides (MAOs) targeting the FV-short-specific donor and acceptor splice sites and tested their efficacy in a liver cell line (HepG2) that naturally expresses full-length FV and FV-short. Cells were treated with 0–20 µM MAO, and full-length FV and FV-short mRNA expression was analysed by RT-(q)PCR. Both MAOs, alone or in combination, decreased the FV-short/full-length FV mRNA ratio down to ~50% of its original value in a specific and dose-dependent manner. This pilot study provides proof-of-principle for the possibility to decrease FV-short expression by antisense-mediated splicing modulation. In turn, this may form the basis for novel therapeutic approaches to bleeding disorders caused by FV-short over-expression and/or elevated TFPIα (activity) levels

    Differential Effects of Platelet Factor 4 (CXCL4) and Its Non-Allelic Variant (CXCL4L1) on Cultured Human Vascular Smooth Muscle Cells

    Get PDF
    Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation

    Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy.

    No full text
    ABSTRACT: The number of applications of fluorine 19 (F) magnetic resonance (MR) imaging and spectroscopy in biomedical and clinical research is steadily growing. The 100% natural abundance of fluorine and its relatively high sensitivity for MR (83% to that of protons) make it an interesting nucleus for a wide range of MR applications. Fluorinated contrast media have a number of advantages over the conventionally used gadolinium-based or iron-based contrast agents. The absence of an endogenous fluorine background intensity in the human body facilitates reliable quantification of fluorinated contrast medium or drugs. Anatomy can be visualized separately with proton MR imaging, creating the application of hybrid hydrogen 1 (H)/19F MR imaging. The availability of 2 channels (ie, the H and F channels) enables dual-targeted molecular imaging. Recently, novel developments have emerged on fluorine-based contrast media in preclinical studies and imaging techniques. The developments in fluorine MR seem promising for clinical applications, with contributions in therapy monitoring, assessment of lung function, angiography, and molecular imaging. This review outlines the translation from recent advances in preclinical MR imaging and spectroscopy to future perspectives of clinical hybrid H/F MR imaging applications
    corecore