422 research outputs found

    Electron scattering states at solid surfaces calculated with realistic potentials

    Full text link
    Scattering states with LEED asymptotics are calculated for a general non-muffin tin potential, as e.g. for a pseudopotential with a suitable barrier and image potential part. The latter applies especially to the case of low lying conduction bands. The wave function is described with a reciprocal lattice representation parallel to the surface and a discretization of the real space perpendicular to the surface. The Schroedinger equation leads to a system of linear one-dimensional equations. The asymptotic boundary value problem is confined via the quantum transmitting boundary method to a finite interval. The solutions are obtained basing on a multigrid technique which yields a fast and reliable algorithm. The influence of the boundary conditions, the accuracy and the rate of convergence with several solvers are discussed. The resulting charge densities are investigated.Comment: 5 pages, 4 figures, copyright and acknowledgment added, typos etc. correcte

    Stochastic methods for solving high-dimensional partial differential equations

    Full text link
    We propose algorithms for solving high-dimensional Partial Differential Equations (PDEs) that combine a probabilistic interpretation of PDEs, through Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and time-integration schemes are used to estimate pointwise evaluations of the solution of a PDE. We use a sequential control variates algorithm, where control variates are constructed based on successive approximations of the solution of the PDE. Two different algorithms are proposed, combining in different ways the sequential control variates algorithm and adaptive sparse interpolation. Numerical examples will illustrate the behavior of these algorithms

    Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry

    Full text link
    We present the Copupled Cluster (CC) method and the Density matrix Renormalization Grooup (DMRG) method in a unified way, from the perspective of recent developments in tensor product approximation. We present an introduction into recently developed hierarchical tensor representations, in particular tensor trains which are matrix product states in physics language. The discrete equations of full CI approximation applied to the electronic Schr\"odinger equation is casted into a tensorial framework in form of the second quantization. A further approximation is performed afterwards by tensor approximation within a hierarchical format or equivalently a tree tensor network. We establish the (differential) geometry of low rank hierarchical tensors and apply the Driac Frenkel principle to reduce the original high-dimensional problem to low dimensions. The DMRG algorithm is established as an optimization method in this format with alternating directional search. We briefly introduce the CC method and refer to our theoretical results. We compare this approach in the present discrete formulation with the CC method and its underlying exponential parametrization.Comment: 15 pages, 3 figure

    Tensor completion in hierarchical tensor representations

    Full text link
    Compressed sensing extends from the recovery of sparse vectors from undersampled measurements via efficient algorithms to the recovery of matrices of low rank from incomplete information. Here we consider a further extension to the reconstruction of tensors of low multi-linear rank in recently introduced hierarchical tensor formats from a small number of measurements. Hierarchical tensors are a flexible generalization of the well-known Tucker representation, which have the advantage that the number of degrees of freedom of a low rank tensor does not scale exponentially with the order of the tensor. While corresponding tensor decompositions can be computed efficiently via successive applications of (matrix) singular value decompositions, some important properties of the singular value decomposition do not extend from the matrix to the tensor case. This results in major computational and theoretical difficulties in designing and analyzing algorithms for low rank tensor recovery. For instance, a canonical analogue of the tensor nuclear norm is NP-hard to compute in general, which is in stark contrast to the matrix case. In this book chapter we consider versions of iterative hard thresholding schemes adapted to hierarchical tensor formats. A variant builds on methods from Riemannian optimization and uses a retraction mapping from the tangent space of the manifold of low rank tensors back to this manifold. We provide first partial convergence results based on a tensor version of the restricted isometry property (TRIP) of the measurement map. Moreover, an estimate of the number of measurements is provided that ensures the TRIP of a given tensor rank with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral

    Numerics of boundary-domain integral and integro-differential equations for BVP with variable coefficient in 3D

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the links below - Copyright @ 2013 Springer-VerlagA numerical implementation of the direct boundary-domain integral and integro-differential equations, BDIDEs, for treatment of the Dirichlet problem for a scalar elliptic PDE with variable coefficient in a three-dimensional domain is discussed. The mesh-based discretisation of the BDIEs with tetrahedron domain elements in conjunction with collocation method leads to a system of linear algebraic equations (discretised BDIE). The involved fully populated matrices are approximated by means of the H-Matrix/adaptive cross approximation technique. Convergence of the method is investigated.This study is partially supported by the EPSRC grant EP/H020497/1:"Mathematical Analysis of Localised-Boundary-Domain Integral Equations for Variable-Coefficients Boundary Value Problems"

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    Addition of platinum derivatives to neoadjuvant single-agent fluoropyrimidine chemoradiotherapy in patients with stage II/III rectal cancer: protocol for a systematic review and meta-analysis (PROSPERO CRD42017073064)

    Get PDF
    Background Neoadjuvant (chemo-)radiation has proven to improve local control compared to surgery alone, but this improvement did not translate into better overall or disease-specific survival. The addition of oxaliplatin to fluoropyrimidine-based neoadjuvant chemoradiotherapy holds the potential of positively affecting survival in this context since it has been proven effective in the palliative and adjuvant setting of colorectal cancer. Thus, the objective of this systematic review is to assess the efficacy, safety, and quality of life resulting from adding a platinum derivative to neoadjuvant single-agent fluoropyrimidine-based chemoradiotherapy in patients with Union for International Cancer Control stage II and III rectal cancer. Methods: MEDLINE, Web of Science, and Cochrane Central Register of Controlled Trials will be systematically searched to identify all randomized controlled trials comparing single-agent fluoropyrimidine-based chemoradiotherapy to combined neoadjuvant therapy including a platinum derivative. Predefined data on trial design, quality, patient characteristics, and endpoints will be extracted. Quality of included trials will be assessed according to the Cochrane Risk of Bias Tool, and the GRADE recommendations will be applied to judge the quality of the resulting evidence. The main outcome parameter will be survival, but also treatment toxicity, perioperative morbidity, and quality of life will be assessed. Discussion: The findings of this systematic review and meta-analysis will provide novel insights into the efficacy and safety of combined neoadjuvant chemoradiotherapy including a platinum derivative and may form a basis for future clinical decision-making, guideline evaluation, and research prioritization. Systematic review registration PROSPERO CRD4201707306

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661
    corecore