2,670 research outputs found
Characterization of CFRP mode I and mode II cohesive element parameters for 0//0 and +45//-45 interfaces
Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0
Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal
significant changes over the three to four year interval between these
observations and previous observations taken with the VLA in 1999 and with
Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray
lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies
farther away from the central binary than the outer radio jets, and comes from
material interpreted as being shock heated to ~10^6 K, a likely result of
collision between high speed material ejected from the central binary and
regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE)
outer X-ray lobe-jet moved out away from the central binary, with an apparent
projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet
almost disappeared between 2000 and 2004, presumably due to adiabatic expansion
and cooling. The NE radio bright spot also moved away from the central binary
between 2000 and 2004, but with a smaller apparent velocity than of the NE
X-ray bright spot. The SW outer lobe-jet was not detected in the radio in
either 1999 or 2004. The density and mass of the X-ray emitting material is
estimated. Cooling times, shock speeds, pressure and confinement are discussed.Comment: 23 pages, 8 figure
The Intrinsic Absorber in QSO 2359-1241: Keck and HST Observations
We present detailed analyses of the absorption spectrum seen in QSO 2359-1241
(NVSS J235953-124148). Keck HIRES data reveal absorption from twenty
transitions arising from: He I, Mg I, Mg II, Ca II, and Fe II. HST data show
broad absorption lines (BALs) from Al III 1857, C IV 1549, Si IV 1397, and N V
1240. Absorption from excited Fe II states constrains the temperature of the
absorber to 2000K < T < 10,000K and puts a lower limit of 10^5 cm^{-3} on the
electron number density. Saturation diagnostics show that the real column
densities of He I and Fe II can be determined, allowing to derive meaningful
constraints on the ionization equilibrium and abundances in the flow. The
ionization parameter is constrained by the iron, helium and magnesium data to
-3.0 < log(U) < -2.5 and the observed column densities can be reproduced
without assuming departure from solar abundances. From comparison of the He I
and Fe II absorption features we infer that the outflow seen in QSO 2359-1241
is not shielded by a hydrogen ionization front and therefore that the existence
of low-ionization species in the outflow (e.g., Mg II, Al III, Fe II) does not
necessitate the existence of such a front. We find that the velocity width of
the absorption systematically increases as a function of ionization and to a
lesser extent with abundance. Complementary analyses of the radio and
polarization properties of the object are discussed in a companion paper
(Brotherton et al. 2000).Comment: 30 pages, 9 figures, in press with the Ap
Time walkers and spatial dynamics of ageing information
The distribution of information is essential for living system's ability to
coordinate and adapt. Random walkers are often used to model this distribution
process and, in doing so, one effectively assumes that information maintains
its relevance over time. But the value of information in social and biological
systems often decay and must continuously be updated. To capture the spatial
dynamics of ageing information, we introduce time walkers. A time walker moves
like a random walker, but interacts with traces left by other walkers, some
representing older information, some newer. The traces forms a navigable
information landscape. We quantify the dynamical properties of time walkers
moving on a two-dimensional lattice and the quality of the information
landscape generated by their movements. We visualise the self-similar landscape
as a river network, and show that searching in this landscape is superior to
random searching and scales as the length of loop-erased random walks
On Languages Accepted by P/T Systems Composed of joins
Recently, some studies linked the computational power of abstract computing
systems based on multiset rewriting to models of Petri nets and the computation
power of these nets to their topology. In turn, the computational power of
these abstract computing devices can be understood by just looking at their
topology, that is, information flow.
Here we continue this line of research introducing J languages and proving
that they can be accepted by place/transition systems whose underlying net is
composed only of joins. Moreover, we investigate how J languages relate to
other families of formal languages. In particular, we show that every J
language can be accepted by a log n space-bounded non-deterministic Turing
machine with a one-way read-only input. We also show that every J language has
a semilinear Parikh map and that J languages and context-free languages (CFLs)
are incomparable
Effective quantum gravity observables and locally covariant QFT
Perturbative algebraic quantum field theory (pAQFT) is a mathematically
rigorous framework that allows to construct models of quantum field theories on
a general class of Lorentzian manifolds. Recently this idea has been applied
also to perturbative quantum gravity, treated as an effective theory. The
difficulty was to find the right notion of observables that would in an
appropriate sense be diffeomorphism invariant. In this article I will outline a
general framework that allows to quantize theories with local symmetries (this
includes infinitesimal diffeomorphism transformations) with the use of the BV
(Batalin-Vilkovisky) formalism. This approach has been successfully applied to
effective quantum gravity in a recent paper by R. Brunetti, K. Fredenhagen and
myself. In the same paper we also proved perturbative background independence
of the quantized theory, which is going to be discussed in the present work as
well.Comment: 16 pages, based on a plenary talk given at the 14th Marcel Grossmann
Meeting in Rome (July 2015
A progressive damage fatigue model for unidirectional laminated composites based on Finite Element Analysis: Theory and Practice
TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis
Severe sepsis is often accompanied by acute kidney injury (AKI) and albuminuria. Here we studied whether the AKI and albuminuria associated with lipopolysaccharide (LPS) treatment in mice reflects impairment of the glomerular endothelium with its associated endothelial surface layer. LPS treatment decreased the abundance of endothelial surface layer heparan sulfate proteoglycans and sialic acid, and led to albuminuria likely reflecting altered glomerular filtration perm-selectivity. LPS treatment decreased the glomerular filtration rate (GFR), while also causing significant ultrastructural alterations in the glomerular endothelium. The density of glomerular endothelial cell fenestrae was 5-fold lower whereas the average fenestrae diameter was 3-fold higher in LPS-treated than in control mice. The effects of LPS on the glomerular endothelial surface layer, endothelial cell fenestrae, GFR, and albuminuria were diminished in TNF receptor 1 (TNFR1) knockout mice, suggesting that these LPS effects are mediated by TNF-α activation of TNFR1. Indeed, intravenous administration of TNF decreased GFR and led to loss of glomerular endothelial cell fenestrae, increased fenestrae diameter, and damage to the glomerular endothelial surface layer. LPS treatment decreased kidney expression of vascular endothelial growth factor (VEGF). Thus, our findings confirm the important role of glomerular endothelial injury, possibly by a decreased VEGF level, in the development and progression of AKI and albuminuria in the LPS model of sepsis in the mouse
Implementation of fatigue model for unidirectional laminate based on finite element analysis : theory and practice
The aim of this study is to deal with the simulation of intra-laminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the 'damage' cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the LadevSze damage model and the permanent shear strain accumulation based on Van Paepegem's formulation. This approach is implemented into commercial software (Siemens PLM). The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level) in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages...)
- …
