30 research outputs found

    Experimental investigation of sandy soil stabilization using chitosan biopolymer

    Get PDF
    The performance of an environmentally friendly biopolymer synthesised from secondary resources to overcome the wind erosion of sandy soil was investigated in this study. The study employed a multi-scale approach to investigate the mechanical, erosional, and hydraulic properties of sandy soil. At the macroscale, experimental techniques such as unconfined and triaxial compression tests, permeability measurements, contact angle assessments, and wind tunnel experiments were utilized to characterize the bulk behavior of the soil. Concurrently, molecular dynamics (MD) simulations were conducted at the nanoscale to predict surface mechanical characteristics and elucidate chemical interactions at the molecular level. Results show that when the outer surface of the sandy particles is coated with a sparse concentration of biopolymer, the sandy aerosol inhibitory performance is significant even under extreme storm conditions reaching speeds of 140 km/h of storms. The study on the impact of biopolymer content, curing time, and curing conditions revealed that the addition of chitosan biopolymer has the ability to enhance the bonding between particles and significantly enhance the mechanical properties of sandy soil. The atomic insight from molecular dynamics reveals huge entanglement between sandy particles and biopolymer by Van der Waals interaction. The results of the Unconfined Compressive Strength test indicate that chitosan enhances the compressive strength of sand by up to 320 kPa. Additionally, the triaxial test demonstrated that the application of chitosan led to a 34.2 kPa improvement in the cohesion of sand. Furthermore, analysis of the permeability test results revealed a decrease in the hydraulic conductivity coefficient from 1.6 × 10^-6 m/s to 5.7 × 10^-7 m/s, representing a reduction of approximately 35 %

    Transition and Stability of Copolymer Adsorption Morphologies on the Surface of Carbon Nanotubes and Implications on Their Dispersion

    Full text link
    In this study, the adsorption morphologies as well as stability and transitions of a commercial dispersant copolymer (BYK 9076) on the surface of multiwalled carbon nanotubes (MWCNTs) were studied using Fourier transform infrared and UV-vis spectroscopy, dynamic light scattering, and electron microscopy techniques. The results show that the dispersion of carbon nanotubes in ethanol does not increase continuously with increasing copolymer/CNT ratio, which is correlated with the adsorption morphologies of the copolymer on the CNT surface. At a ratio of copolymer/CNT below 0.5, the morphology is random, shifting to a hemimicelle structure at a ratio from 0.5 to 1.0 while at ratios above 1.0, a cylindrical pattern is seen. The hemimicelle morphology is able to prevent the agglomeration of CNTs when the CNT concentration increases to 8.7 mg/mL, while cylindrical morphology is more efficient and stable to provide dispersion of CNTs at higher concentrations of CNTs

    Analysis of AFM cantilever dynamics close to sample surface

    No full text
    For imaging and manipulation of biological specimens application of atomic force microscopy (AFM) in liquid is necessary. In this paper, tapping-mode AFM cantilever dynamics in liquid close to sample surface is modeled and simulated by well defining the contact forces. The effect of cantilever tilting angle has been accounted carefully. Contact forces have some differences in liquid in comparison to air or vacuum in magnitude or formulation. Hydrodynamic forces are also applied on the cantilever due to the motion in liquid. A continuous beam model is used with its first mode and forward-time simulation method for simulation of its hybrid dynamics and the frequency response and amplitude versus separation diagrams are extracted. The simulation results show a good agreement with experimental results. The resonance frequency in liquid is so small in comparison to air due to additional mass and also additional damping due to the viscosity of the liquid around. The results show that the effect of separation on free vibration amplitude is great. Its effect on resonance frequency is considerable too

    Design and Performance Tests of a Mobile Mechanical Manipulator

    No full text
    Mobile mechanical manipulators are one of the automation aspects which were revealed in last years of twentieth century. These machines assume the responsibility of human and gradually expand the domain of their activities in industry. This paper is a presentation of the Sweeper Robot designed in the Robotic Laboratory of Iran University of Science and Technology. The original design of this robot allowing to its gripper to constantly remain parallel to the ground is presented. The dynamic and kinematical models of the robot have been computed. A software was developed in MATLAB to validate the kinematical and dynamic models of the robot by comparison with the experimental results. Once the robot was built and its systematic odometric error estimated by experiment, a control scheme for linear motions was developed to deal with this error. The approach is based on the introduction of an initial rectifying offset motion before starting the linear motion. Eventually, classical line tracking and image processing algorithms were used to complete our robot and the efficiency of our design to achieve its mission in picking and placing different objects according to various algorithms

    Hydrous Proton Transfer through Graphene Interlayer: An Extraordinary Mechanism under Magnifier

    Full text link
    Balancing ionic selectivity against permeability in filters made from graphene remains a challenge today. Interlayer distance, as the most important factor, dominates nearly all aspects of the flow inside the channel, from the formation of water molecules to the hydration shell of the ions. Unraveling the effects of the interlayer distance on the proton diffusion process helps lay a foundation for the cutting-edge proton conduction technology. Here, the reactive molecular dynamics simulations are used to probe the proton flow through a series of hydrated graphene channels with different interlayer distance values. The results show that the proton-selectivity experiences a sharp increase when the channel height is reduced to values under 8 Ã…, which is near the end of the hydration radii range of the monovalent and divalent cations. Reducing the interlayer distance also decreases the number of confined water molecules, consequently reducing the proton diffusion rate as the hopping platform fades. This way, spatial hindrance combined with the proton-selective Grotthuss mechanism provide a proton-exclusive membrane. The outputs of this work can be used for the optimization of proton-exclusive nanochannels and to serve affordable proton-exchange membranes (PEMs) for technological advancement in diverse fields from PEM fuel cells to storing liquid hydrogen

    Using graphene oxide to improve physical property and control ASR expansion of cement mortar

    Full text link
    Alkali-silica reaction (ASR) is a slowly occurring reaction in concrete between alkaline pore solution and reactive non-crystalline silica in aggregates, which is a challenge to physical property and durability of concrete. The oxygen-containing functional groups coupled with large surface area of graphene oxide (GO) nanomaterial renders highly reactive interaction with cement-based composite. Here, the physical properties and ASR expansion test of cement mortars modified with varied loadings of GO (wGO) or/and Pyrex glass (GOPM) were implemented after optimizing GO dispersion efficiency in water. The water absorption and microstructures of GOPM were observed to figure out the mechanism of GO's effect on mechanical strength, permeability, and ASR expansion of GOPM. Results show, 15 kJ is the optimal sonication energy for the dispersion of 300 mL pristine GO-water suspension with 0.04% wGO; the effect of GO on improving the flexural and compressive strength of GOPM is remarkable, the maximal amplitude is up to 24.16%, 43.03% compared with the baseline, respectively; GO has great influence on long-term anti-permeability and controlling expansion, the nano-nucleation and interlocking effect of GO render the expansion rate of GOPM be well below 0.1% threshold
    corecore