55 research outputs found

    Novel SCN9A mutations underlying extreme pain phenotypes: unexpected electrophysiological and clinical phenotype correlations.

    Get PDF
    The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.J.J.C. and A.M.H. were supported by an MRC Research Career Development fellowship. F.M.G., F.R., and E.C.E. were supported by Wellcome Trust Senior Fellowships WT088357/Z/09/Z and WT084210/Z/07/Z and MRC Grant MC_UU_12012/3. C.G.W. was supported by the Cambridge Biomedical Research Campus.This is the final published version. It first appeared at http://www.jneurosci.org/content/35/20/7674.short

    Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1.

    Get PDF
    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis and could be targeted for the treatment of type 2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L cells producing GLP-1. By microarray and quantitative PCR analysis, we identified trpa1 as an L cell-enriched transcript in the small intestine. Calcium imaging of primary L cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (mustard oil), carvacrol, and polyunsaturated fatty acids, which were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells, an effect that was abolished in cultures from trpa1(-/-) mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes.This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will is available in Diabetes online at http://diabetes.diabetesjournals.org/content/early/2014/10/13/db14-0737.short?rss=1&patientinform-links=yes&legid=diabetes;db14-0737v1

    The impact of prior obesity surgery on glucose metabolism after body contouring surgery: A pilot study

    Get PDF
    Body contouring surgery enhances physical appearance by means of surgical subcutaneous fat removal (SSFR). However, it remains unclear how SSFR may affect glucose metabolism and its broader effects on the endocrine system, especially in individuals who have undergone obesity (bariatric) surgery. This study aimed to evaluate the impact of SSFR on glucose excursion and insulin resistance in such patients, by examining them over three visits (within 1 week before surgery, 1 week after surgery, and 6 weeks after surgery). The independent impact of SSFR and history of obesity surgery on glucose homeostasis was evaluated in 29 participants, of whom ten patients (34%) had a history of obesity surgery. Indices of glucose metabolism were evaluated using cluster robust-error logistic regression. Results indicated that SSFR led to a gross improvement in insulin resistance at 6 weeks after the surgery in all patient’s irrespective of BMI, type 2 diabetes mellitus (T2D) status, or history of obesity surgery (OR 0.22; p = 0.042). However, no effect was observed on glucose excursion except for a transient increase at visit 2 (1 week after surgery) in those without prior obesity surgery. Interestingly, participants with a history of obesity surgery had approximately half the odds being in the upper tertile for HOMA-IR (OR 0.44; p = 0.142) and ten-folds lower odds of having severely abnormal glucose excursion (OR 0.09; p = 0.031), irrespective of their BMI, T2D status, or time post SSFR. In conclusion, this study showed that body contouring surgery through SSFR resulted in (at least) short-term improvement in insulin resistance (independent of the participant’s BMI, T2D status, or history of obesity surgery) without affecting glucose excursion under the GTT. On the contrary, obesity surgery may have a long-term effect on glucose excursion, possibly due to sustained improvement of pancreatic ß-cell function

    Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2.

    Get PDF
    Interest in how the gut microbiome can influence the metabolic state of the host has recently heightened. One postulated link is bacterial fermentation of "indigestible" prebiotics to short-chain fatty acids (SCFAs), which in turn modulate the release of gut hormones controlling insulin release and appetite. We show here that SCFAs trigger secretion of the incretin hormone glucagon-like peptide (GLP)-1 from mixed colonic cultures in vitro. Quantitative PCR revealed enriched expression of the SCFA receptors ffar2 (grp43) and ffar3 (gpr41) in GLP-1-secreting L cells, and consistent with the reported coupling of GPR43 to Gq signaling pathways, SCFAs raised cytosolic Ca2+ in L cells in primary culture. Mice lacking ffar2 or ffar3 exhibited reduced SCFA-triggered GLP-1 secretion in vitro and in vivo and a parallel impairment of glucose tolerance. These results highlight SCFAs and their receptors as potential targets for the treatment of diabetes

    Molecular basis of FAAH-OUT-associated human pain insensitivity

    Get PDF
    Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies

    Metabolic aspects of surgical subcutaneous fat removal: An umbrella review and implications for future research

    Get PDF
    Although obesity is a preventable disease, maintaining a normal body weight can be very challenging and difficult, which has led to a significant increase in the demand for surgical subcutaneous fat removal (SSFR) to improve physical appearance. The need for SSFR is further exacerbated because of the global rise in the number of bariatric surgeries, which is currently the single most durable intervention for mitigating obesity. Fat tissue is now recognized as a vital endocrine organ that produces several bioactive proteins. Thus, SSFR-mediated weight (fat) loss can potentially have significant metabolic effects; however, currently, there is no consensus on this issue. This review focuses on the metabolic sequelae after SSFR interventions for dealing with cosmetic body appearance. Data was extracted from existing systematic reviews and the diversity of possible metabolic changes after SSFR are reported along with gaps in the knowledge and future directions for research and practice. We conclude that there is a potential for metabolic sequelae after SSFR interventions and their clinical implications for the safety of the procedures as well as for our understanding of subcutaneous adipose tissue biology and insulin resistance are discussed

    Molecular basis of FAAH-OUT-associated human pain insensitivity.

    Get PDF
    Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.- Medical Research Council/United Kingdom - grant No. [G1100340/MRC_]. - Medical Research Council/United Kingdom - grant No. [MR/R011737/1/MRC_]. - Versus Arthritis/United Kingdom [20200/VAC_]. - Medical Research Council grant [G1100340]. - Medical Research Council grant [MR/R011737/1]. - Qatar University grants [QUSD-CMED-2018/9-3] and [QUCG-CMED-19/20-4]. - Qatar National Research Fund [NPRP13S-0209-200315]. - Versus Arthritis grant [20200]. - Wellcome grant [200183/Z/15/Z]

    Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function

    Get PDF
    Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons

    Biased signaling: A viable strategy to drug ghrelin receptors for the treatment of obesity

    Get PDF
    Obesity is a global burden and a chronic ailment with damaging overall health effects. Ghrelin, an octanoylated 28 amino acid peptide hormone, is secreted from the oxyntic mucosa of the stomach. Ghrelin acts on regions of the hypothalamus to regulate feeding behavior and glucose homeostasis through its G protein-coupled receptor. Recently, several central pathways modulating the metabolic actions of ghrelin have been reported. While these signaling pathways can be inhibited or activated by antagonists or agonists, they can also be discriminatingly activated in a “biased” response to impart different degrees of activation in distinct pathways downstream of the receptor. Here, we review recent ghrelin biased signaling findings as well as characteristics of ghrelin hormone and its receptors pertinent for biased signaling. We then evaluate the feasibility for ghrelin receptor biased signaling as a strategy for the development of effective pharmacotherapy in obesity treatment
    corecore