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Interest in how the gut microbiome can influence the metabolic
state of the host has recently heightened. One postulated link is
bacterial fermentation of “indigestible” prebiotics to short-chain
fatty acids (SCFAs), which in turn modulate the release of gut
hormones controlling insulin release and appetite. We show here
that SCFAs trigger secretion of the incretin hormone glucagon-
like peptide (GLP)-1 from mixed colonic cultures in vitro. Quan-
titative PCR revealed enriched expression of the SCFA receptors
ffar2 (grp43) and ffar3 (gpr41) in GLP-1–secreting L cells, and
consistent with the reported coupling of GPR43 to Gq signaling
pathways, SCFAs raised cytosolic Ca2+ in L cells in primary culture.
Mice lacking ffar2 or ffar3 exhibited reduced SCFA-triggered
GLP-1 secretion in vitro and in vivo and a parallel impairment
of glucose tolerance. These results highlight SCFAs and their
receptors as potential targets for the treatment of diabetes.
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T
argeting the release of anorectic and antidiabetic
gut peptides is the focus of many ongoing drug
development programs, as evidence is accumu-
lating that enhanced secretion of glucagon-like

peptide (GLP)-1 and peptide YY (PYY) from intestinal L
cells may translate into beneficial effects in subjects with
diabetes and obesity (1). Already, the diabetes field has
witnessed the impact of therapeutic GLP-1 mimetics and
dipeptidyl peptidase (DPP)4 inhibitors, which, respectively,
mimic endogenous active GLP-1 and slow its enzymatic de-
gradation in the circulation (2). The injectable GLP-1
mimetics, in particular, are associated not only with im-
proved blood glucose control and reduced incidence of
hypoglycemia but also with significant weight reduction
(3). The observed correlation between elevated post-
prandial GLP-1 levels and improved glucose homeostasis
in patients after bariatric surgery indicates that the body
has excess capacity in the GLP-1 axis that can be recruited
in obese diabetic patients, with downstream beneficial
effects on food intake and diabetes control (4). Identifying

and validating pharmaceutical strategies to enhance GLP-1
secretion are central to many ongoing L cell–targeting re-
search programs.

L cells are a component of the enteroendocrine system,
diffusely located along the length of the intestinal epithe-
lium (5). They make contact with the gut lumen via apical
processes and are believed to respond directly to luminal
signals. Among the best characterized triggers of GLP-1
secretion are sugars, amino acids, and long-chain fatty acids,
which stimulate L cells by a variety of pathways including
transporter-associated uptake, metabolism, and G-protein–
coupled receptor activation (5,6). L cells are, however,
found in highest density in the colonic epithelium, where
these nutrients are unlikely to reach significant concen-
trations (7). Short-chain fatty acids (SCFAs), derived from
bacterial fermentation of macrofibrous material reaching
the distal gut, by contrast are known to reach high con-
centrations under physiological conditions in the colons of
healthy subjects. Intraluminal concentrations beyond 100
mmol/L, comprising ~60% acetate (C2), 25% propionate (C3),
and 15% butyrate (C4), have been reported (8). Plasma
levels of SCFA are also dominated by acetate but are
generally below ;200 mmol/L unless elevated by ethanol
metabolism (9,10). Nondigestible and fermentable dietary
fiber, as well as SCFAs themselves, has been shown to in-
crease GLP-1 secretion in humans (11,12) and rodents (13,14),
and enhanced PYY release has been proposed as a link
between luminal SCFAs and altered gut motility (15,16).

SCFAs act as a local nutrient source but can also trig-
ger cell-specific signaling cascades by activation of the
G-protein–coupled free fatty acid receptor (FFAR)2 (GPR43)
and FFAR3 (GPR41) (17,18). These two receptors share
~40% amino acid sequence similarity and are conserved
across several mammalian species (17–19). Both receptors
respond to SCFAs containing two to five carbons, although
a preference of FFAR2 for C2 and C3 fatty acids and of
FFAR3 for C3–C5 carbon chain lengths has been reported
(17,18,20). The receptors differ in their intracellular sig-
naling capabilities, with FFAR2 reportedly coupling to ei-
ther Gq or Gi/o and FFAR3 exclusively activating Gi/o
pathways (17,18,20). The finding that both receptors are
located in colonic L cells by immunostaining (21–23) sug-
gests that SCFAs may use this pathway to modulate L-cell
function. Experimental data in support of this idea are,
however, still lacking.

The aim of the current study was to establish and ex-
plore the link between SCFAs and GLP-1 secretion, making
use of our transgenic mouse model (GLU-Venus) in which L
cells are identifiable by their expression of a yellow fluo-
rescent protein derivative, Venus (24).
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RESEARCH DESIGN AND METHODS

All animal procedures were approved by the local ethics review committees
and conformed to Home Office regulations. Experiments were performed using
mice on a C57B/6 background, except in the case of the ffar22/2 and ffar32/2

mice and littermate controls, which were on a 129/SvEv background.
Generation of knockout mice. For generation of the targeting vectors, ho-
mology arms (ffar3, 1,250 base pairs [bp] 59 and 3,914 bp 39; ffar2, 1,761 bp
59 and 4,199 bp 39) were PCR amplified from genomic DNA and cloned into
a vector containing internal ribosomal entry site b-gal reporter gene, neo-
mycin selection marker, and two thymidine kinase negative selection markers
(Supplementary Figs. 1 and 2). The linearized vector was electroporated into
embryonic stem cells (129/SvEv), and homologous recombination was
detected by screening PCR and Southern blot. Chimeras were generated by
blastocyst injection, bred with 129/SvEv animals, and maintained inbred in this
background.
Glucose-stimulated GLP-1 secretion in vivo. Experiments were performed
on 3- to 4-month-old ffar22/2 and ffar32/2 mice or wild-type littermate control
129/SvEv mice. No significant differences in body weight were observed be-
tween the wild-type and knockout groups. Mice were fasted for 4 h and dosed
per os with 20 mg/kg DPP4 inhibitor (cat. no. KR-62436; Sigma). Thirty
minutes later, mice were dosed by gavage with 1.5 g/kg glucose solution
(Fisher Scientific). For initial GLP-1 measurement, 150 mL blood was collected
from awake mice via tail bleed into EDTA-coated capillary tubes (Bilbate)
before glucose dosing. Thirty minutes after glucose dosing, mice were killed
by CO2 inhalation and blood was collected via cardiac puncture into tubes
containing aprotinin (0.6 trypsin inhibiting units/mL). Blood samples were
centrifuged immediately, and plasma was frozen on dry ice before assay in
duplicate for active GLP-1 (MesoScale, Gaithersburg, Maryland).
Oral glucose tolerance test. Three- to four-month-old ffar22/2, ffar32/2, and
wild-type littermate control 129/SvEv mice were fasted for 14 h and then
dosed by gavage with 1.5 g/kg glucose. Blood glucose was measured using
a handheld glucometer (OneTouch Ultra) via tail bleed. Samples for insulin
measurements were taken via tail bleed from awake mice into heparinized
capillary tubes (Bilbate) and assayed by ELISA (Crystalchem Ultra sensitive
mouse insulin ELISA). Mice undergoing the procedure were of similar body
weight: ffar22/2, 22.5 6 0.4 g (n = 11), wild type, 21.56 0.5 g (n = 8); ffar32/2,
22.7 6 1.5 g (n = 6), and wild type, 20.8 6 0.6 g (n = 7).

Insulin tolerance test. Three- to four-month-old ffar22/2, ffar32/2, and wild-
type littermate control 129/SvEv mice were fasted for 4 h and then dosed with
0.75 units/kg insulin i.p. (Actrapid insulin, supplied by our Named Veterinary
Surgeon). Blood glucose was measured using a handheld glucometer (One-
Touch Ultra) via tail bleed from awake mice.
Colonic tissue and cell preparation. Mice aged 6–26 weeks were killed by
cervical dislocation, and colons were collected in ice-cold Leibovitz-15 me-
dium. Cultures for secretion and calcium imaging experiments were prepared
as previously described (24). Colonic tissue used for RNA and protein ex-
traction was washed in PBS and placed in RNA later or a protein lysis buffer,
respectively, and frozen until processed.

FIG. 1. SCFAs stimulate GLP-1 secretion. A: Acute stimulation of
GLP-1 secretion. Mixed primary cultures from murine colon were
incubated for 2 h in 10 mmol/L glucose (Con) or in the additional
presence of acetate (Ace) (1 mmol/L), propionate (Pro) (1 mmol/L),
or butyrate (But) (1 mmol/L) with or without IBMX (100 mmol/L) as
indicated. GLP-1 secretion in each well is expressed relative to the
basal secretion (Con) measured in parallel on the same day. Data
represent the means 6 SEM of the number of wells indicated above
each bar. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with
their respective controls in the absence or presence of IBMX by one-
way ANOVA with post hoc Dunnett test. B: GLP-1 secretion from
primary colonic cultures triggered by 140 mmol/L cocktail of SCFAs
and an osmotic control of 140 mmol/L NaCl. GLP-1 secretion in each
well is expressed relative to the basal secretion measured in parallel
on the same day. Data represent the means 6 SEM of the number of
wells indicated above each bar. **P < 0.01 and ***P < 0.001 com-
pared with baseline and ##P < 0.01 compared with NaCl by Student
t test.

FIG. 2. SCFAs raise intracellular calcium in identified colonic L cells.
A: Mixed colonic cultures were loaded with fura2-AM. Pseudocolor images
of fura2 340:380 nm fluorescence ratio (reflecting [Ca

2+
]i) shown prior

to (basal) and during the application of propionate (1 mmol/L), and
after washing with saline. B: Identification of an L cell in the field of
view shown in A identified by the fluorescence of Venus (475 nm exci-
tation). C: A representative response of an L and a non–L cell recorded
as in A. D: Mean calcium changes in L cells (filled bars) and non–L cells
(open bars) after the addition of acetate (1 mmol/L), propionate
(1 mmol/L), or CFMB (30 mmol/L) as indicated. Ratios (340:380) in the
presence of the test agent were normalized to the mean of the back-
ground ratios of each cell measured before addition and after washout
of the test compound. Data represent the means 6 SEM of the number
of cells indicated above each bar. *P < 0.05, **P < 0.01, and ***P <
0.001 compared with baseline and ##P < 0.01 and ###P < 0.001 com-
pared with non–L cells by Student t test. (A high-quality digital repre-
sentation of this figure is available in the online issue.)
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GLUTag cells were cultured in Dulbecco’s modified Eagle’s medium (5.5
mmol/L glucose) supplemented with 10% FBS, 2 mmol/L L-glutamine, 100
units/mL penicillin, and 0.1 mg/mL streptomycin.
RNA extraction and quantitative PCR. Total RNA from cells sorted with
fluorescence-activated cell sorter (FACS) prepared fromGLU-Venus transgenic
mice (24) was isolated using a microscale RNA isolation kit (Ambion). Total
RNA from GLUTag cells and murine colonic tissue was prepared following the
Tri-Reagent protocol (Sigma). All samples were reverse transcribed according
to standard protocols. Quantitative RT-PCR was performed with a 7900 HT
Fast Real-Time PCR system (Applied Biosystems) using Taqman probes for
b-actin, gcg, pyy, ffar2, and ffar3 from Applied Biosystems. Expression was
compared with that of b-actin measured in parallel on the same sample, giving
a DCt for b-actin minus the test gene. If the test gene was undetectable, it was
assigned a Ct value of 40. Means 6 SE were calculated and statistics were
performed for the DCt data and only converted to relative expression levels
(2DCt) for presentation in the Figures.
Colonic protein analysis. Tissue was mechanically homogenized in lysis
buffer. Active GLP-1 was assessed by ELISA (Millipore, Watford, U.K.) and
expressed relative to total protein content, measured using a Bradford assay
(Sigma).
Secretion from primary mixed colonic culture. Secretion studies were
performed 24–36 h after culture preparation. Where applicable, cultures were
preincubated with 0.2 mg/mL pertussis toxin for 18 h. Cultures were washed
with standard saline and incubated with test substances for 2 h at 37°C. Se-
creted and cellular GLP-1 was extracted as previously described (24), and
active GLP-1 was quantified by ELISA (Millipore). GLP-1 secretion was
expressed as a fraction of the total hormone (secreted plus extracted) and
normalized to basal secretion measured in the same set of experiments.
Ca

2+
imaging. Experiments were performed 4–7 days postplating, using co-

lonic tissue from GLU-Venus transgenic mice with L cell–specific Venus ex-
pression (24). Cells were loaded with 7 mmol/L Fura2-AM (Invitrogen, Paisley,
U.K.), 0.01% pluronic F127, and 300 mmol/L eserine in standard saline solution
for 30 min at 37°C. Single-cell imaging was performed using an inverted fluo-
rescence microscope (Olympus IX71; Southall, U.K.) with a 403 oil-immersion
objective. Fura2 was excited at 340/6 and 380/4 nm and Venus at 475/10 nm,
using a 75-W xenon arc lamp and a monochromator (Cairn Research, Faversham,
U.K.) controlled by MetaFluor software (Molecular Devices, Wokingham, U.K.).
Emission was recorded with an Orca ER CCD camera (Hamamatsu, Welwyn
Garden City, U.K.) using a dichroic mirror and a 510-nm long-pass filter. Test
substances were added to the bath solution and perfused at ;1 mL/min. Fura2
fluorescence measurements were taken every 2 s, background corrected, and
expressed as the 340:380 nm ratio. Average fluorescence ratios from individual
cells were determined over 20-s periods before addition and during perfusion
of a test agent. Peak responses to a test agent were expressed as the mean
ratio of the test agent divided by the averaged ratios measured prior to drug
application.
Solutions. Standard in vitro saline solution contained (in millimoles per liter)
4.5 KCl, 138 NaCl, 4.2 NaHCO3, 1.2 NaH2PO4, 2.6 CaCl2, 1.2 MgCl2, 10 glucose,
and 10 HEPES, pH 7.4 (NaOH). Essentially fatty acid–free BSA (0.1%) was
added to solutions used for static secretion experiments. SCFAs were dis-
solved directly in saline solution and pH corrected if necessary. All other drugs
for in vitro experiments were prepared as 1,0003 stocks. The protein and
secretion lysis buffer contained 50 mmol/L Tris-HCl, 150 mmol/L NaCl, 1%
IGEPAL-CA 630, 0.5% deoxycholic acid, and one tablet of complete EDTA-free
protease inhibitor cocktail (Roche). All reagents were supplied by Sigma
(Poole, U.K.) unless otherwise indicated. The synthetic GPR43 agonist
(S)-2-(4-chlorophenyl)-N-(5-fluorothiazol-2-yl)-3-methylbutanamide (CFMB) (25)
was synthesized, its identity was confirmed by nuclear magnetic resonance
analysis, and it was dissolved in DMSO as a 1,0003 stock.
Data analysis. Comparisons between conditions were made using Student
t test (Microsoft Excel) or by one- or two-way ANOVA with post hoc Bonferroni
correction or Dunnett test (Prism5; GraphPad), as indicated, with a threshold
for significance of P , 0.05. All data are expressed as means 6 SEM.

RESULTS

SCFAs enhance GLP-1 release. In primary murine co-
lonic cultures, acetate and propionate (1 mmol/L) signifi-
cantly stimulated GLP-1 secretion over a 2-h incubation
period (Fig. 1A). Secretion was further enhanced in the
presence of 100 mmol/L phosphodiesterase inhibitor iso-
butyl methyl xanthine (IBMX), and under these conditions
a significant stimulation by 1 mmol/L butyrate was also
observed. To mimic the higher SCFA content of the co-
lonic lumen, we also examined the effect of a 140 mmol/L

mixture containing 80 mmol/L acetate, 20 mmol/L butyrate,
and 40 mmol/L propionate, which was added to the standard
bath solution and compared with 140 mmol/L additional
NaCl as an osmotic control. The effect of the high-SCFA
mixture was similar to that triggered by the 1 mmol/L
concentrations, enhancing GLP-1 secretion ;1.3-fold com-
pared with the osmotic control (n = 5–6, P , 0.01) (Fig.
1B). By contrast, GLUTag cells were not found to secrete
GLP-1 in response to 1 or 10 mmol/L SCFA (data not
shown).
SCFA-induced calcium responses in primary mouse
colonic L cells. L cells in mixed cultures were identified
by their expression of Venus (Fig. 2B), and the calcium
concentration, [Ca2+]i, was monitored in both L cells and
their nonfluorescent neighbors after loading of the mono-
layer with Fura2-AM (Fig. 2A). [Ca2+]i is represented in the
figures by the 340:380 fluorescence ratio. Propionate (1
mmol/L) triggered a transient Ca2+ response (Fig. 2A, C,
and D), with a mean 1.5 6 0.1-fold increase (n = 17, P ,
0.01) above baseline. Acetate (1 mmol/L) triggered a com-
parable [Ca2+]i response of 1.3 6 0.1-fold (n = 6, P , 0.05)
(Fig. 2D). The SCFA-induced Ca2+ mobilization appeared
specific to L cells, as intracellular [Ca2+]i in the non–L-cell
population was unaffected by acetate and only marginally
elevated by propionate (Fig. 2D).
ffar2 and ffar3 expression is enriched in primary L
cells. Expression of ffar2 and ffar3 was investigated by
quantitative RT-PCR using mRNA from FACS-sorted in-
testinal L cells from transgenic GLU-Venus mice (24).
Nonfluorescent cells collected in parallel were used to
represent the mixed non–L-cell population. As shown in
Fig. 3, ffar2 and ffar3 were expressed in small intestinal
and colonic L cells and significantly enriched in L-cell
compared with non–L-cell populations (P, 0.05). GLUTag
cells expressed ffar3 but had barely detectable levels of
ffar2.
Acute SCFA-induced GLP-1 secretion is not mediated
via a Gi-signaling pathway. The findings that SCFAs
trigger Ca2+ elevation in L cells and enhance GLP-1 secre-
tion are consistent with the involvement of a Gq-mediated
pathway, potentially, therefore, implicating FFAR2. Hence,
we tested whether a synthetic phenylacetamide agonist for
FFAR2, CFMB (25), could also mobilize Ca2+ and found
that 30 mmol/L CFMB indeed elevated intracellular Ca2+ in
L cells (Fig. 2D). A smaller but significant increase was
also observed in the non–L-cell population. To evaluate
any opposing contribution from Gi signaling, we examined
GLP-1 release in the presence of the Gi inhibitor pertussis
toxin. Whereas SCFAs were stimulatory in the presence of
IBMX (Fig. 1B), somatostatin (100 nmol/L), used as a pos-
itive control for Gi-coupled pathways, abolished GLP-1 se-
cretion under these conditions (n = 3, P , 0.001) (Fig. 4A),
an effect that was partially reversed by preincubation with
0.2 mg/mL pertussis toxin (n = 3, P , 0.001). By contrast,
pertussis toxin did not have a significant effect on the re-
sponse to 1 mmol/L propionate (Fig. 4B), suggesting that
there is little signaling by SCFA through Gi-coupled path-
ways during 2-h secretion studies in vitro.
FFAR2 mediates SCFA-induced GLP-1 release. To
evaluate the relative contributions of FFAR2 and FFAR3 to
SCFA-triggered secretion, we examined the effects of
propionate and acetate on primary colonic cultures from
mice with knockout of either ffar2 (ffar22/2) or ffar3
(ffar32/2). While GLP-1 secretion was triggered by 1 mmol/L
propionate and acetate in cultures from wild-type littermate
controls (Fig. 5A), the response to propionate was reduced
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by 70% (P , 0.001) and the response to acetate was abol-
ished (P , 0.001) in the ffar2 knockout tissue. Knockout of
ffar3 also impaired secretory responses to both acetate and
propionate (P , 0.01) (Fig. 5A), although to a lesser extent
than ffar2 knockout. Similar, but more pronounced, effects
were observed in the presence of 100 mmol/L IBMX (Fig.
5A). The higher concentration of mixed SCFA (140 mmol/L,
as described above) also failed to enhance GLP-1 secretion
significantly in both the ffar2 and ffar3 knockout mouse
models (Fig. 5B).

Analysis of mRNA expression in whole colonic tissue
extracts from wild-type and knockout mice revealed that,
as expected, ffar22/2 mice lacked ffar2mRNA and ffar32/2

mice lacked ffar3 (Fig. 5C and D). ffar3 expression was
also significantly decreased in ffar22/2 mice, but, although

we also observed a trend toward a reduced ffar2 ex-
pression in ffar32/2 mice, this did not reach statistical
significance.
ffar2 knockout decreases GLP-1 content. To examine
whether the receptors have additional effects on L cells
operating over a longer time scale, we examined whether
colonic tissue from mice lacking ffar2 or ffar3 had altered
levels of mRNA for glucagon (gcg) (which includes the
coding sequence for GLP-1), pyy, or active GLP-1 peptide.
Knockout of ffar3 did not have a significant effect on co-
lonic gcgmRNA or active GLP-1. There was a trend toward
reduced colonic gcg and pyy mRNA expression in the
ffar2 receptor knockout model that did not reach statisti-
cal significance (Fig. 5E and F). ffar2-deficient mice,
however, had significantly reduced colonic GLP-1 protein
content (n = 6, P , 0.05) (Fig. 5G).

FIG. 3. SCFA receptors FFAR2 and FFAR3 are expressed in L cells.
Relative expression of ffar2 (A) and ffar3 (B) mRNAs relative to
b-actin assessed by RT-PCR in FACS-sorted L cells and non–L cells from
the small intestine (L

+
and L

2
, respectively) and colon (LC

+
and LC

2
)

and the GLUTag model L-cell line. Data are presented as geometric
means 6 the upper SEM calculated from the log(base 2) data (n = 3
each). Significance comparisons between L cells and non–L cells were
calculated by one-way ANOVA with a post hoc Bonferroni correction
test performed on the log(base 2) data: *P< 0.05, **P< 0.01, and ***P<
0.001.

FIG. 4. Propionate (Prop) responses are not sensitive to pertussis
toxin (Ptx). A: GLP-1 secretion from primary colonic cultures treated
with IBMX (100 mmol/L) with or without somatostatin (Sst) (100
nmol/L) in the absence (■) or presence (□) of 0.2 mg/mL pertussis
toxin (all n = 3). B: GLP-1 secretion from primary colonic cultures
triggered by propionate (1 mmol/L) in the absence and presence of
pertussis toxin (0.2 mg/mL). The number of wells is indicated above
the bars. Mixed primary cultures from the colon were incubated in
bath solution containing reagents as indicated. GLP-1 secretion in
each well is expressed relative to the basal secretion (control), mea-
sured in parallel on the same day. Data represent the means 6 SEM of
the number of wells indicated. Statistical significance was assessed by
one-way ANOVA with a post hoc Bonferroni correction test: *P < 0.05
and ***P < 0.001.
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FFAR2 and FFAR3 affect GLP-1 release in vivo. To
evaluate whether the reduced in vitro GLP-1 secretory
capacity of ffar2- and ffar3-deficient mice translates into im-
paired hormone secretion in vivo, we examined plasma GLP-
1–level responses to oral glucose administration. Basal levels
of active GLP-1 were reduced by ;40% in ffar2-deficient
mice (P, 0.01) (Fig. 6A) and were also lower, although not
significantly, in ffar3-deficient mice compared with those in
wild-type littermate controls. Following an oral glucose load,
more pronounced impairments of plasma GLP-1 responses
were observed in both ffar2 and ffar3 knockout models (n =
5, P , 0.05) (Fig. 6A). Coinciding with the reduced circu-
lating GLP-1 concentrations, ffar2- and ffar3-deficient mice
also exhibited impaired glucose tolerance when tested with
gavage administration of 1.5 g/kg glucose (Fig. 6B and C).
This correlated with reduced plasma insulin levels, although
again this reached significance in mice lacking ffar2 but not
ffar3 when compared with their respective littermate con-
trols (Fig. 6D and E). To test for possible differences in in-
sulin sensitivity, ffar22/2 and ffar32/2 mice and littermate
controls were injected with 0.75 units/kg insulin after a 4-h
fast. No significant differences were found between the dif-
ferent genotypes (Fig. 6F and G).

DISCUSSION

Our results demonstrate a direct link between SCFA acti-
vation of FFAR2, elevation of intracellular Ca2+ in L cells,
and enhanced GLP-1 secretion from primary colonic cul-
tures. A stimulatory role for FFAR2 in vivo is supported by
the finding that knockout of ffar2 lowers both basal and
glucose-stimulated GLP-1 concentrations.

By quantitative PCR, we could demonstrate that ex-
pression of mRNA for ffar2 and ffar3 is enriched in L cells,
consistent with the detection of these receptors in PYY- and
GLP-1–positive cells in rat and human colon by immuno-
histochemistry (21–23). Interestingly, ffar2 expression was
very low in the GLP-1–secreting cell line GLUTag, perhaps
explaining the poor responsiveness of GLUTag cells to
SCFAs (data not shown) and emphasizing the importance
of studying primary L cells in parallel with cell line models.

FFAR2 reportedly couples to Gq- or Gi/o-signaling path-
ways and FFAR3 exclusively to Gi. The finding that GLP-1
secretion is enhanced, rather than inhibited, by SCFAs
suggests that Gq-coupled pathways predominate over any
Gi activation, and indeed, we did not observe any evidence
that Gi coupling blunts SCFA-triggered GLP-1 secretion

FIG. 5. ffar2 and ffar3 knockout impairs SCFA-triggered GLP-1 secretion. A: GLP-1 secretion from primary colonic cultures from wild-type, ffar22/2
,

and ffar32/2
mice. Mixed primary cultures from the colon from wild-type, ffar32/2

, and ffar22/2
mice were incubated in bath solution containing

10 mmol/L glucose together with acetate (1 mmol/L), propionate (1 mmol/L), and IBMX (100 mmol/L) as indicated (all n = 6). B: GLP-1 secretion
from primary colonic cultures from wild-type, ffar22/2

, and ffar32/2
mice triggered by a 140 mmol/L cocktail of SCFAs and an osmotic control of

140 mmol/L NaCl. GLP-1 secretion in each well is expressed relative to the basal secretion (control) measured in parallel on the same day, and
error bars represent 1 SEM. Effects of SCFAs in the absence (*P < 0.05, **P < 0.01, and ***P < 0.001) or presence (DDP < 0.01 and DDDP <
0.001) of IBMX and effects of genotype (#P< 0.05, ##P< 0.01, and ###P < 0.001) were assessed for significance by two-way ANOVA with post hoc
Bonferroni correction test. C–F: Expression of ffar3 (C), ffar2 (D), gcg (E), and pyy (F) mRNA in colonic tissue isolated from ffar32/2

(n = 5)
and ffar22/2

(n = 5) mice and wild-type littermates (n = 6). Expression was normalized to that of b-actin in the same sample. Data are presented as
geometric means, and the error bar was calculated from the log(base 2) data. Significance comparisons between genotypes were calculated by one-
way ANOVA with a post hoc Dunnett test performed on the log(base 2) data: *P < 0.05 and ***P < 0.001. G: Content of active GLP-1 peptide in
colonic tissue isolated from ffar32/2

and ffar22/2
mice and wild-type littermates. Active GLP-1 in colonic extracts was assessed by enzyme-linked

immunosorbent assay and is expressed relative to sample protein assessed with a Bradford assay. Significance comparisons between genotypes
(n = 6 each) were calculated by one-way ANOVA with a post hoc Dunnett test: *P < 0.05.
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either in secretion studies with added pertussis toxin or
after knockout of ffar3. Somatostatin, by contrast, inhibited
IBMX-triggered GLP-1 release in a pertussis toxin–sensitive
manner, indicating that downstream Gi-coupled pathways
are globally functional in L cells.

The idea that FFAR2 is coupled to Gq-signaling pathways
in L cells is suggested by the Ca2+ imaging data, which
showed that acetate and propionate triggered intracellular
Ca2+ responses in the L-cell population. In support of this
idea, knockout of ffar2 abolished SCFA-triggered GLP-1
secretion in vitro. The explanation for the blunted GLP-1
secretory response to SCFA in cultures from ffar32/2 mice
is less clear, as FFAR3 has not been reported to couple to
stimulatory Gq- or Gs-signaling pathways. One contributing
factor could be the reduced ffar2 expression that was ob-
served in ffar32/2 mice, although this did not reach statisti-
cal significance in our samples. Reduced expression of ffar2
has, however, previously been reported in adipose tissue of
ffar3 knockout mice (26). Alternatively, there may be a pre-
viously unidentified component to FFAR3 signaling in L cells
that also contributes to SCFA-triggered GLP-1 secretion. This
is not, however, supported by the observation that stimulation
of GLP-1 release was not observed in GLUTag cells, which
express ffar3 but very little ffar2. A dominant role of FFAR2
over FFAR3 in SCFA-triggered L-cell activation is further
suggested by the acute Ca2+-elevations seen in primary L
cells in response to the FFAR2-specific agonist CFMB,
which reportedly does not have activity against FFAR3 (25).

It is not known whether FFAR2 and FFAR3 reside on the
apical or basolateral membrane of L cells or whether they
primarily detect luminal or plasma SCFA. SCFA levels in
the colonic lumen are in the area of 100 mmol/L. Although
this is considerably above the half maximal effective con-
centrations (EC50s) of FFAR2 and FFAR3 for SCFA (0.5–1
mmol/L) (17,18,20), SCFA concentrations may be lower in
the immediate vicinity of the L cells as a result of the dif-
fusional barrier provided by the mucous layer and active
uptake by neighboring enterocytes. Circulating plasma SCFA
concentrations are in the range of 100–200 mmol/L (10),
which is closer to the working range of the receptors, and
while most studies have examined how luminally applied
SCFAs affect GLP-1 release (14,27,28) it has also been
shown that systemically infused acetate can enhance GLP-1
secretion (28). As luminal SCFA concentrations are not
predicted to change markedly in response to acute food
ingestion, it is possible that SCFAs produced by colonic
fermentation provide a chronic stimulatory tone on L cells
via apical or basolaterally located SCFA receptors. This
could account for the circulating levels of active GLP-1 that
are detectable even in the fasting state and amplify the
responses to ingested nutrients, mediated, for example, via
neurohormonal signals triggered by nutrient arrival higher
up the gastrointestinal tract.

Consistent with the impaired responsiveness of ffar22/2

and ffar32/2 colonic cultures to SCFAs in vitro, we also
observed lower GLP-1 levels in the knockout mice in vivo.
As ffar22/2 mice exhibited both reduced colonic GLP-1
content and impaired SCFA-triggered secretion in vitro, we
cannot conclude from our data which of these components
underlies the reduced basal and glucose-triggered GLP-1
secretory responses in vivo. In ffar32/2 mice, however, the
colonic GLP-1 content was not reduced, suggesting that
the lower plasma GLP-1 levels reflect the impaired SCFA-
triggered secretory response.

In addition to having low circulating GLP-1 levels, ffar22/2

and ffar32/2 mice exhibited impaired glucose tolerance. The

FIG. 6. ffar2 and ffar3 knockout mice have impaired glucose tolerance.
A: Glucose stimulated GLP-1 secretion in vivo. ffar22/2

and ffar32/2

mice and wild-type littermates (n = 5 each) were dosed with DPP4 in-
hibitor at a dose of 20 mg/kg per os after a 4-h fast. Thirty minutes post–
DPP4 inhibitor dosing, mice were dosed with 1.5 g/kg glucose per os
Plasma active GLP-1 was assessed by a MesoScale assay at 0 and 30 min
of the oral glucose tolerance test. Data represent means 6 1 SEM, and
statistical significance was assessed by Student t test: *P < 0.05 and
**P < 0.01. B–E: Oral glucose tolerance test in ffar22/2

mice (n = 8)
(left panel) and wild-type littermates (n = 11) (B and D) or ffar32/2

mice (n = 7) (right panel) and wild-type littermates (n = 6) (C and E).
Following an overnight fast, mice were given 1.5 g/kg glucose per os,
and blood glucose (B and C) and insulin (D and E) were measured at
the time points indicated. F and G: Insulin tolerance test in ffar22/2

mice (n = 11) (left panel) and wild-type littermates (n = 6) (F) or in
ffar32/2

mice (n = 7) (right panel) and wild-type littermates (n = 7) (G).
Following a 4-h fast, mice were given 0.75/kg insulin intraperitoneal,
and blood glucose was measured at the time points indicated. No sig-
nificant differences between genotypes were observed. Data in B–G
represent means 6 1 SEM, and statistical significance was assessed by
two-way ANOVA with repeated measures: * P < 0.05, ** P < 0.01, and
*** P < 0.001.
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reduced GLP-1 concentrations are likely to contribute to
the impaired glucose homeostasis but may not be the only
cause because ffar2 and ffar3 are not exclusively ex-
pressed in intestinal cells. In fact, they are better charac-
terized as mediators of SCFA effects on immune cells and
adipocytes (17,18,20), where they have been implicated
in modulating neutrophil activation (18,20), reducing in-
flammation by inhibition of cytokine and chemokine ex-
pression, enhancing leptin production (29), stimulating
adipogenesis, and inhibiting lipolysis (30,31). They are
also expressed in pancreatic b and a cells (G. Tolhurst,
H. Parker, A. Habib, F. Reimann, and F. Gribble, unpublished
observations). Global knockout of these receptors may
therefore affect adipocyte function, inflammation, or pan-
creatic b-cell function, which would themselves impact on
glucose tolerance. The fact that we observed reduced in-
sulin levels in the ffar22/2 mice during an oral glucose
tolerance test but did not observe differences in insulin
tolerance indicates that the observed impaired glucose
tolerance in our model reflects an impairment of insulin
secretion, possibly in part due to an impaired incretin axis.
Another ffar22/2 mouse model was recently reported to
exhibit increased food intake but had lower body weight and
insulin levels compared with wild-type controls after a pro-
longed period on a high-fat diet (32). No explanation was
found for the increased food intake, but our data suggest
that it may be related to reduced secretion of L-cell peptides
like GLP-1 and PYY. Unlike the findings of our study, those
of Bjursell et al. (32) did not show a significant difference in
glucose tolerance between chow-fed ffar22/2 and control
mice. The apparent differences between the two knockout
models may reflect the fact that the mice were maintained
on different genetic backgrounds (C57B/6JOlaHsd vs. 129/
SvEv) or that they were studied at different ages.

Interest in the gut microbiome has heightened recently,
with the recognition that our complement of colonic bac-
teria may not simply reflect factors such as diet and illness
but can also in return influence food intake and metabo-
lism. Probiotics, prebiotics, and high-fiber diets are pro-
moted for their potential beneficial effects on obesity,
diabetes, inflammation, and immunity, as well as local ef-
fects on the health and integrity of the gut. One potential
link between colonic microflora and systemic activity are
SCFAs, which are produced by bacterial fermentation of
fiber and which not only act as a local nutrient source but
also trigger the release of anorectic hormones like GLP-1
and PYY. Our data suggest that SCFAs produced by bac-
terial fermentation in the gut can directly influence L cells
to enhance the release of peptides such as GLP-1 and PYY.
Whether this interrelationship is altered by metabolic con-
ditions such as diabetes and obesity remains to be deter-
mined. FFAR2 should perhaps be added to the list of target
receptors that may be exploitable for the pharmacological
stimulation of the enteroendocrine system.
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