4 research outputs found

    A new Canterbury tale: the eighth International Meeting on Yeast Apoptosis in Canterbury, UK, 2–6 May 2011

    Get PDF
    This spring, more than a hundred scientists from around the world gathered in Canterbury, the historic city in the county of Kent in South East England, to attend the eighth International Meeting on Yeast Apoptosis (IMYA). As with every IMYA conference since its inception in 2002, the feeling of being part of a community that is almost a family was evident. In addition, this year's meeting has shown that the field of yeast programmed cell death (PCD) is growing, not only in numbers, but also in its thematic scope

    The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca2+ levels to alpha-synuclein toxicity in Parkinson's disease models

    No full text
    Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons, which arises from a yet elusive concurrence between genetic and environmental factors. The protein α-synuclein (αSyn), the principle toxic effector in PD, has been shown to interfere with neuronal Ca(2+) fluxes, arguing for an involvement of deregulated Ca(2+) homeostasis in this neuronal demise. Here, we identify the Golgi-resident Ca(2+)/Mn(2+) ATPase PMR1 (plasma membrane-related Ca(2+)-ATPase 1) as a phylogenetically conserved mediator of αSyn-driven changes in Ca(2+) homeostasis and cytotoxicity. Expression of αSyn in yeast resulted in elevated cytosolic Ca(2+) levels and increased cell death, both of which could be inhibited by deletion of PMR1. Accordingly, absence of PMR1 prevented αSyn-induced loss of dopaminergic neurons in nematodes and flies. In addition, αSyn failed to compromise locomotion and survival of flies when PMR1 was absent. In conclusion, the αSyn-driven rise of cytosolic Ca(2+) levels is pivotal for its cytotoxicity and requires PMR1.status: publishe
    corecore