1,056 research outputs found

    XMM-Newton observations of SNR 1987A. II. The still increasing X-ray light curve and the properties of Fe K lines

    Full text link
    Aims. We report on the recent observations of the supernova remnant SNR 1987A in the Large Magellanic Cloud with XMM-Newton. Carefully monitoring the evolution of the X-ray light curve allows to probe the complex circumstellar medium structure observed around the supernova progenitor star. Methods. We analyse all XMM-Newton observations of SNR 1987A from January 2007 to December 2011, using data from the EPIC-pn camera. Spectra from all epochs are extracted and analysed in a homogeneous way. Using a multi-shock model to fit the spectra across the 0.2-10 keV band we measure soft and hard X-ray fluxes with high accuracy. In the hard X-ray band we examine the presence and properties of Fe K ines. Our findings are interpreted in the framework of a hydrodynamics-based model. Results. The soft X-ray flux of SNR 1987A continuously increased in the recent years. Although the light curve shows a mild flattening, there is no sudden break as reported in an earlier work, a picture echoed by a revision of the Chandra light curve. We therefore conclude that material in the equatorial ring and out-of-plane HII regions are still being swept-up. We estimate the thickness of the equatorial ring to be at least 4.5x10^16 cm (0.0146 pc). This lower limit will increase as long as the soft X-ray flux has not reached a turn-over. We detect a broad Fe K line in all spectra from 2007 to 2011. The widths and centroid energies of the lines indicate the presence of a collection of iron ionisation stages. Thermal emission from the hydrodynamic model does not reproduce the low-energy part of the line (6.4-6.5 keV), suggesting that fluorescence from neutral and/or low ionisation Fe might be present.Comment: 4 pages, 3 figures, 2 tables. Accepted for publication in Astronomy and Astrophysic

    M 33 X-7: ChASeM33 reveals the first eclipsing black hole X-ray binary

    Get PDF
    The first observations conducted as part of the Chandra ACIS survey of M 33 (ChASeM33) sampled the eclipsing X-ray binary M 33 X-7 over a large part of the 3.45 d orbital period and have resolved eclipse ingress and egress for the first time. The occurrence of the X-ray eclipse allows us to determine an improved ephemeris of mid-eclipse and binary period as HJD (2453639.119+-0.005) +- N x (3.453014+-0.000020) and constrain the eclipse half angle to (26.5+-1.1) degree. There are indications for a shortening of the orbital period. The X-ray spectrum is best described by a disk blackbody spectrum typical for black hole X-ray binaries in the Galaxy. We find a flat power density spectrum and no significant regular pulsations were found in the frequency range of 10^{-4} to 0.15 Hz. HST WFPC2 images resolve the optical counterpart, which can be identified as an O6III star with the help of extinction and colour corrections derived from the X-ray absorption. Based on the optical light curve, the mass of the compact object in the system most likely exceeds 9 M_sun. This mass, the shape of the X-ray spectrum and the short term X-ray time variability identify M 33 X-7 as the first eclipsing black hole high mass X-ray binary.Comment: 14 pages, 5 figures, ApJ accepte

    An Improved Heat Kernel Expansion from Worldline Path Integrals

    Get PDF
    The one--loop effective action for the case of a massive scalar loop in the background of both a scalar potential and an abelian or non--abelian gauge field is written in a one--dimensional path integral representation. From this the inverse mass expansion is obtained by Wick contractions using a suitable Green function, which allows the computation of higher order coefficients. For the scalar case, explicit results are presented up to order O(T**8) in the proper time expansion. The relation to previous work is clarified.Comment: 13 pages, Plain TEX, no figure

    A ROSAT PSPC X-Ray Survey of the Small Magellanic Cloud

    Get PDF
    We present the results of a systematic search for point-like and moderately extended soft (0.1-2.4 keV) X-ray sources in a raster of nine pointings covering a field of 8.95 deg^2 and performed with the ROSAT PSPC between October 1991 and October 1993 in the direction of the Small Magellanic Cloud. We detect 248 objects which we include in the first version of our SMC catalogue of soft X-ray sources. We set up seven source classes defined by selections in the count rate, hardness ratio and source extent. We find five high luminosity super-soft sources (1E 0035.4-7230, 1E 0056.8-7146, RX J0048.4-7332, RX J0058.6-7146 and RX J0103-7254), one low-luminosity super-soft source RX J0059.6-7138 correlating with the planetary nebula L357, 51 candidate hard X-ray binaries including eight bright hard X-ray binary candidates, 19 supernova remnants, 19 candidate foreground stars and 53 candidate background active galactic nuclei (and quasars). We give a likely classification for ~60% of the catalogued sources. The total count rate of the detected point-like and moderately extended sources in our catalogue is 6.9+/-0.3 s^-1, comparable to the background subtracted total rate from the integrated field of ~6.1+/-0.1 s^-1.Comment: Accepted by A&AS, 13 pages, 2 Postscript figure

    Two long-period X-ray pulsars detected in the SMC field around XTE J0055-727

    Full text link
    An XMM-Newton target of opportunity observation of the field around the transient 18.37 s pulsar XTE J0055-727 in the Small Magellanic Cloud (SMC) revealed two bright, long-period X-ray pulsars in the EPIC data. A new pulsar, XMMU J005517.9-723853, with a pulse period of 701.7 +/- 0.8 s was discovered and 500.0 +/- 0.2 s pulsations were detected from XMMU J005455.4-724512 (= CXOU J005455.6-724510), confirming the period found in Chandra data. We derive X-ray positions of RA = 00h5455.88s, Dec = -72d45m10.5s and RA = 00h55m18.44s, Dec = -72d38m51.8s (J2000.0) with an uncertainty of 0.2'' utilizing optical identification with OGLE stars. For both objects, the optical brightness and colours and the X-ray spectra are consistent with Be/X-ray binary systems in the SMC.Comment: A&A Letters, in pres

    The eclipsing bursting X-ray binary EXO 0748-676 revisited by XMM-Newton

    Get PDF
    The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been observed at several occasions by XMM-Newton during the initial calibration and performance verification (CAL/PV) phase. We present here the results obtained from observations with the EPIC cameras. Apart from several type-I X-ray bursts, the source shows a high degree of variability with the presence of soft flares. The wide energy coverage and high sensitivity of XMM-Newton allows for the first time a detailed description of the spectral variability. The source is found to be the superposition of a central (~2 10^8 cm) Comptonized emission, most probably a corona surrounding the inner edge of an accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a typical temperature of ~0.6 keV with an indication of non-solar abundances. Most of the variations of the source can be accounted for by a variable absorption affecting only the central comptonized component and reaching up to NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found compatible with an irradiated atmosphere of an accretion disc which intercepts the central emission due to the system high inclination.Comment: 6 pages, 4 figures, accepted for publication in A&A Letters, XMM special issu

    A Probable Optical Counterpart for the Isolated Neutron Star RX J1308.6+2127

    Full text link
    Using a very deep observation with HST/STIS, we have searched for an optical counterpart to the nearby radio-quiet isolated neutron star RX J1308.6+2127 (RBS 1223). We have identified a single object in the 90% Chandra error circle that we believe to be the optical counterpart. This object has m50CCD=28.56±0.13m_{50CCD}=28.56\pm0.13 mag, which translates approximately to an unabsorbed flux of Fλ=(1.7±0.3)e−20F_{\lambda}=(1.7 \pm 0.3)e-20 ergs/s/cm^2/A at 5150 A or an X-ray-to-optical flux ratio of log(fX/fopt)=4.9log(f_X/f_opt)=4.9. This flux is a factor of ≈5\approx 5 above the extrapolation of the black-body fit to the X-ray spectrum, consistent with the optical spectra of other isolated neutron stars. Without color information we cannot conclude that this source is indeed the counterpart of RX J1308.6+2127. If not, then the counterpart must have m50CCD>29.6m_{50CCD} > 29.6 mag, corresponding to a flux that is barely consistent with the extrapolation of the black-body fit to the X-ray spectrum.Comment: 4 pages, 2 figures. Uses emulateapj5.sty, onecolfloat5.sty. Accepted by ApJ Letter

    Spectroscopy of the brightest optical counterparts of X-ray sources in the direction of M~31 and M~33

    Full text link
    Recent surveys of the Local Group spiral Galaxies M31 and M33 with XMM-Newton yielded a large number of X-ray sources. As part of the effort to identify and classify the objects responsible for this X-ray emission, we have obtained optical spectra of the brightest optical counterparts of the identified X-ray sources, using the 1.3m Skinakas Telescope. Most of these objects are foreground star candidates. The purpose of the present study is to confirm this identification and to explore the compatibility between the optical spectral classification and the observed X-ray properties of the sources. We have obtained optical spectra for the 14 brightest optical counterparts of X-ray sources identified by XMM-Newton in the direction of M31 and for 21 optical counterparts in the direction of M33, using the 1.3m Skinakas telescope in Crete, Greece. All of the M31 sources and all but one of the M33 sources were confirmed to be foreground stars, of spectral types between A and M. One of the stars is a late M dwarf with H-alpha emission, a flare star, also displaying strong X-ray variability. One of the M~33 sources (lying within the D25 ellipse) corresponds to a previously known background galaxy, LEDA 5899.Comment: 9 pages, 12 figures, accepted in A&

    The continued spectral and temporal evolution of RX J0720.4-3125

    Get PDF
    RX J0720.4-3125 is the most peculiar object among a group of seven isolated X-ray pulsars (the so-called "Magnificent Seven"), since it shows long-term variations of its spectral and temporal properties on time scales of years. This behaviour was explained by different authors either by free precession (with a seven or fourteen years period) or possibly a glitch that occurred around MJD=52866±73days\mathrm{MJD=52866\pm73 days}. We analysed our most recent XMM-Newton and Chandra observations in order to further monitor the behaviour of this neutron star. With the new data sets, the timing behaviour of RX J0720.4-3125 suggests a single (sudden) event (e.g. a glitch) rather than a cyclic pattern as expected by free precession. The spectral parameters changed significantly around the proposed glitch time, but more gradual variations occurred already before the (putative) event. Since MJD≈53000days\mathrm{MJD\approx53000 days} the spectra indicate a very slow cooling by ∌\sim2 eV over 7 years.Comment: seven pages, three figures, three tables; accepted by MNRA
    • 

    corecore