413 research outputs found

    SP-0602: PSMA ligands for diagnosis and therapy

    Get PDF

    The ultra-sensitive electrical detection of spin Rabi oscillation at paramagnetic defects

    Get PDF
    A short review of the pulsed electrically detected magnetic resonance (pEDMR) experiment is presented. PEDMR allows the highly sensitive observation of coherent electron spin motion of charge carriers and defects in semiconductors by means of transient current measurements. The theoretical foundations, the experimental implementation, its sensitivity and its potential with regard to the investigation of electronic transitions in semiconductors are discussed. For the example of the P_b center at the crystalline silicon (111) to silicon dioxide interface it is shown experimentally how one can detect spin Rabi-oscillation, its dephasing, coherence decays and spin-coupling effects.Comment: The manuscript has been submitted for journal publicatio

    Superconducting properties in heavily overdoped Ba(Fe0.86Co0.14)2As2 single crystals

    Get PDF
    We report the intrinsic superconducting parameters in a heavily overdoped Ba(Fe1-xCox)(2)As-2 (x=0.14) single crystal and their influence in the resulting vortex dynamics. We find a bulk superconducting critical temperature of 9.8 K, magnetic penetration depth lambda(ab) (0)=660 +/- 50 nm, coherence length xi(ab) (0)=6.4 +/- 0.2 nm, and the upper critical field anisotropy gamma(T -> Tc) approximate to 3.7. The vortex phase diagram, in comparison with the optimally doped compound, presents a narrow collective creep regime. The intrinsic pinning energy plays an important role in the resulting vortex dynamics as compared with similar pinning landscape and comparable intrinsic thermal fluctuations. (C) 2014 Elsevier Ltd. All rights reserved.X1111Ysciescopu

    Influence of random point defects introduced by proton irradiation on critical current density and vortex dynamics of Ba(Fe0.925Co0.075)2As2 single crystals

    Get PDF
    In this work we analyze the influence of random point defects introduced by 3 MeV proton irradiation on the critical current density (Jc) and vortex dynamics of a Ba(Fe0.925Co0.075)2As2 single crystal. The results show that at low temperatures (T) the irradiation produces an enhancement of Jc of up to 2.6 times. However the Jc (T) retention at different magnetic fields (H) in the elastic regime, estimated by the n exponent in Jc vs (1-(T/Tc)2)n, is poorer after the irradiations, due to the thermal softening of the pinning by the random point defects. We found that the elastic to plastic crossover and melting lines are only affected by the reduction of the superconducting critical temperature (Tc); they are exactly the same after rescaling the phase diagram by T/Tc. The pinning mechanisms in the single crystals can be associated with a mixed pinning landscape that produces a modulation in S(H,T) as a consequence of a fishtail or second peak in the magnetization.Fil: Haberkorn, Nestor Fabian. Los Alamos National Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maiorov, B.. Los Alamos National Laboratory; Estados UnidosFil: Usov, I. O.. Los Alamos National Laboratory; Estados UnidosFil: Weigand, M.. Los Alamos National Laboratory; Estados UnidosFil: Hirata, W.. Osaka University; JapónFil: Miyasaka, S.. Osaka University; JapónFil: Tajima, S.. Osaka University; JapónFil: Chikumoto, N.. International Superconductivity Technology Center. Superconductivity Research Laboratory; JapónFil: Tanabe, K.. International Superconductivity Technology Center. Superconductivity Research Laboratory; JapónFil: Civale, Leonardo. Los Alamos National Laboratory; Estados Unido

    Universal distribution of transparencies in highly conductive Nb/AlOx_x/Nb junctions

    Full text link
    We report the observation of the universal distribution of transparencies, predicted by Schep and Bauer [Phys. Rev. Lett. {\bf 78}, 3015 (1997)] for dirty sharp interfaces, in uniform Nb/AlOx_x/Nb junctions with high specific conductance (10810^8 Ohm1^{-1}cm2^{-2}). Experiments used the BCS density of states in superconducting niobium for transparency distribution probing. Experimental results for both the dc IVI-V curves at magnetic-field-suppressed supercurrent and the Josephson critical current in zero magnetic field coincide remarkably well with calculations based on the multimode theory of multiple Andreev reflections and the Schep-Bauer distribution.Comment: 4 pages, 4 figures, references adde

    Microscopic self-consistent theory of Josephson junctions including dynamical electron correlations

    Full text link
    We formulate a fully self-consistent, microscopic model to study the retardation and correlation effects of the barrier within a Josephson junction. The junction is described by a series of planes, with electronic correlation included through a local self energy for each plane. We calculate current-phase relationships for various junctions, which include non-magnetic impurities in the barrier region, or an interfacial scattering potential. Our results indicate that the linear response of the supercurrent to phase across the barrier region is a good, but not exact indicator of the critical current. Our calculations of the local density of states show the current-carrying Andreev bound states and their energy evolution with the phase difference across the junction. We calculate the figure of merit for a Josephson junction, which is the product of the critical current, Ic, and the normal state resistance, R(N), for junctions with different barrier materials. The normal state resistance is calculated using the Kubo formula, for a system with zero current flow and no superconducting order. Semiclassical calculations would predict that these two quantities are determined by the transmission probabilities of electrons in such a way that the product is constant for a given superconductor at fixed temperature. Our self-consistent solutions for different types of barrier indicate that this is not the case. We suggest some forms of barrier which could increase the Ic.R(N) product, and hence improve the frequency response of a Josephson device.Comment: 46 pages, 21 figure

    Treatment response evaluation with (18)F-FDG PET/CT and (18)F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation.

    Get PDF
    AIM The aim of this study was to assess the combined use of the radiotracers (18)F-FDG and (18)F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT). PATIENTS AND METHODS Thirty-four patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with (18)F-FDG and (18)F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD). RESULTS An analysis was possible in 29 patients: three with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, four patients very good partial response-VGPR, nine patients partial response-PR). After treatment, (18)F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5 % and a specificity of 100 %. According to the EORTC 1999 criteria, (18)F-FDG PET/CT-based treatment response revealed CR in 14 patients ((18)F-FDG PET/CT CR), PR in 11 patients ((18)F-FDG PET/CT PR) and progressive disease in four patients ((18)F-FDG PET/CT PD). In terms of (18)F-NaF PET/CT, 4/29 patients (13.8 %) had a negative baseline scan, thus failed to depict MM. Regarding the patients for which a direct lesion-to-lesion comparison was feasible, (18)F-NaF PET/CT depicted 56 of the 129 (18)F-FDG positive lesions (43 %). Follow-up (18)F-NaF PET/CT showed persistence of 81.5 % of the baseline (18)F-NaF positive MM lesions after treatment, despite the fact that 64.7 % of them had turned to (18)F-FDG negative. Treatment response according to (18)F-NaF PET/CT revealed CR in one patient ((18)F-NaF PET/CT CR), PR in five patients ((18)F-NaF PET/CT PR), SD in 12 patients ((18)F-NaF PET/CT SD), and PD in seven patients ((18)F-NaF PET/CT PD). Dynamic (18)F-FDG and (18)F-NaF PET/CT studies showed that SUVaverage, SUVmax, as well as the kinetic parameters K1, influx and FD from reference bone marrow and skeleton responded to therapy with a significant decrease (p < 0.001). CONCLUSION F-FDG PET/CT demonstrated a sensitivity of 57.7 % and a specificity of 100 % in treatment response evaluation of MM. Despite its limited sensitivity, the performance of (18)F-FDG PET/CT was satisfactory, given that 6/9 false negative patients in follow-up scans (66.7 %) were clinically characterized as nCR, a disease stage with very low tumor mass. On the other hand, (18)F-NaF PET/CT does not seem to add significantly to (18)F-FDG PET/CT in treatment response evaluation of MM patients undergoing HDT and ASCT, at least shortly after therapy

    Integration of CT urography improves diagnostic confidence of 68Ga-PSMA-11 PET/CT in prostate cancer patients

    Get PDF
    Background: To prove the feasibility of integrating CT urography (CTU) into 68Ga-PSMA-11 PET/CT and to analyze the impact of CTU on assigning focal tracer accumulation in the ureteric space to either ureteric excretion or metastatic disease concerning topographic attribution and diagnostic confidence. Methods: Ten prostate cancer patients who underwent 68Ga-PSMA-11 PET/CT including CTU because of biochemical relapse or known metastatic disease were retrospectively analyzed. CTU consisted of an excretory phase 10 min after injection of 80 mL iodinated contrast material. Ureter opacification at CTU was evaluated using the following score: 0, 0% opacification; 1, &lt; 50%; 2, 50–99%; 3, 100%. Topographic attribution and confidence of topographic attribution of focal tracer accumulation in the ureteric space were separately assessed for 68Ga-PSMA-11 PET/CT without and with CTU. Diagnostic confidence was evaluated using the following score: 0, &lt; 25% confidence; 1, 26–50%; 2, 51–75%; 3, 76–100%. Results: At CTU, mean ureter opacification score was 2.6 ± 0.7. At 68Ga-PSMA-11 PET/CT without CTU, mean confidence of topographic attribution of focal tracer accumulation was 2.5 ± 0.7 in total and 2.6 ± 0.7 for metastatic disease. At 68Ga-PSMA-11 PET/CT with CTU, mean confidence of topographic attribution of focal areas of tracer accumulation was significantly higher with 2.9 ± 0.2 in total and 2.7 ± 0.9 for metastatic disease (p &lt; 0.001). In 4 of 34 findings (12%) attribution to either ureteric excretion or metastatic disease was discrepant between 68Ga-PSMA-11 PET/CT without and with CTU (n.s). Conclusions: Integration of CTU into 68Ga-PSMA-11 PET/CT is feasible and increases diagnostic confidence of assigning focal areas of tracer accumulation in the ureteric space to either metastatic disease or ureteric excretion

    High-temperature change of the creep rate in YBa 2Cu 3O 7-δ films with different pinning landscapes

    Get PDF
    Magnetic relaxation measurements in YBa 2Cu 3O 7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (J c). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high J c values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Miura, M.. No especifíca;Fil: Baca, J.. No especifíca;Fil: Maiorov, B.. No especifíca;Fil: Usov, I.. No especifíca;Fil: Dowden, P.. No especifíca;Fil: Foltyn, S. R.. No especifíca;Fil: Holesinger, T. G.. No especifíca;Fil: Willis, J. O.. No especifíca;Fil: Marken, K. R.. No especifíca;Fil: Izumi, T.. No especifíca;Fil: Shiohara, Y.. No especifíca;Fil: Civale, L.. No especifíca
    corecore