5 research outputs found

    Poultry feeds carry diverse microbial communities that influence chicken intestinal microbiota colonisation and maturation

    Get PDF
    Microbial colonisation of the gastrointestinal tract of newly hatched chicks starts at hatch, seeded from the immediate hatching environment, and quickly results in dense colonisation. The role of ecological factors in gut colonisation has been extensively investigated, as well as the role of micro- and macronutrients in supporting and selecting for bacterial species highly adapted for utilising those nutrients. However, the microbial community contained in poultry feed and its influence on colonisation and maturation of gut microbiota has not been directly addressed. In this study, we compared the microbiota found in poultry feed, with the microbiota of ileum, cecum and excreta, to identify substantial overlap in core microbiotas of the compared groups. We then investigated the microbiota present in raw feedstuffs: meat and bone meal, wheat, corn, canola, barley, soybean, millrun, sorghum, poultry oil, oats, limestone and bloodmeal from four geographically distinct feedstuff suppliers. Each of the feedstuffs had diverse microbial communities. The meat and bone meal and bloodmeal samples had the most complex and distinct microbial populations. There was substantial overlap in the phylogenetic composition found in the grain and seed samples: barley, canola, corn, millrun, oats, sorghum, soybean meal and wheat. Issues related to methodology, viability of microbial communities in the gut and feed, and the implications for biosecurity are discussed

    Poultry feeds carry diverse microbial communities that influence chicken intestinal microbiota colonisation and maturation

    No full text
    Microbial colonisation of the gastrointestinal tract of newly hatched chicks starts at hatch, seeded from the immediate hatching environment, and quickly results in dense colonisation. The role of ecological factors in gut colonisation has been extensively investigated, as well as the role of micro- and macronutrients in supporting and selecting for bacterial species highly adapted for utilising those nutrients. However, the microbial community contained in poultry feed and its influence on colonisation and maturation of gut microbiota has not been directly addressed. In this study, we compared the microbiota found in poultry feed, with the microbiota of ileum, cecum and excreta, to identify substantial overlap in core microbiotas of the compared groups. We then investigated the microbiota present in raw feedstuffs: meat and bone meal, wheat, corn, canola, barley, soybean, millrun, sorghum, poultry oil, oats, limestone and bloodmeal from four geographically distinct feedstuff suppliers. Each of the feedstuffs had diverse microbial communities. The meat and bone meal and bloodmeal samples had the most complex and distinct microbial populations. There was substantial overlap in the phylogenetic composition found in the grain and seed samples: barley, canola, corn, millrun, oats, sorghum, soybean meal and wheat. Issues related to methodology, viability of microbial communities in the gut and feed, and the implications for biosecurity are discussed.[Figure not available: see fulltext.

    Poultry feeds carry diverse microbial communities that influence chicken intestinal microbiota colonisation and maturation

    No full text
    Microbial colonisation of the gastrointestinal tract of newly hatched chicks starts at hatch, seeded from the immediate hatching environment, and quickly results in dense colonisation. The role of ecological factors in gut colonisation has been extensively investigated, as well as the role of micro- and macronutrients in supporting and selecting for bacterial species highly adapted for utilising those nutrients. However, the microbial community contained in poultry feed and its influence on colonisation and maturation of gut microbiota has not been directly addressed. In this study, we compared the microbiota found in poultry feed, with the microbiota of ileum, cecum and excreta, to identify substantial overlap in core microbiotas of the compared groups. We then investigated the microbiota present in raw feedstuffs: meat and bone meal, wheat, corn, canola, barley, soybean, millrun, sorghum, poultry oil, oats, limestone and bloodmeal from four geographically distinct feedstuff suppliers. Each of the feedstuffs had diverse microbial communities. The meat and bone meal and bloodmeal samples had the most complex and distinct microbial populations. There was substantial overlap in the phylogenetic composition found in the grain and seed samples: barley, canola, corn, millrun, oats, sorghum, soybean meal and wheat. Issues related to methodology, viability of microbial communities in the gut and feed, and the implications for biosecurity are discussed.[Figure not available: see fulltext.

    A systematic review of alcohol screening and assessment measures for young people

    Get PDF
    CITATION: Watson, R., et al. 2016. Proceedings of the 13th annual conference of INEBRIA. Addiction Science & Clinical Practice, 11:13, doi:10.1186/s13722-016-0062-9.The original publication is available at https://ascpjournal.biomedcentral.comENGLISH SUMMARY : Meeting abstracts.https://ascpjournal.biomedcentral.com/articles/10.1186/s13722-016-0062-9Publisher's versio
    corecore