182 research outputs found

    Ionization waves of arbitrary velocity driven by a flying focus

    Full text link
    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or "flying," focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high harmonic generation, and THz generation

    Ion acceleration from laser-driven electrostatic shocks

    Get PDF
    Multi-dimensional particle-in-cell simulations are used to study the generation of electrostatic shocks in plasma and the reflection of background ions to produce high-quality and high-energy ion beams. Electrostatic shocks are driven by the interaction of two plasmas with different density and/or relative drift velocity. The energy and number of ions reflected by the shock increase with increasing density ratio and relative drift velocity between the two interacting plasmas. It is shown that the interaction of intense lasers with tailored near-critical density plasmas allows for the efficient heating of the plasma electrons and steepening of the plasma profile at the critical density interface, leading to the generation of high-velocity shock structures and high-energy ion beams. Our results indicate that high-quality 200 MeV shock-accelerated ion beams required for medical applications may be obtained with current laser systems.Comment: 33 pages, 12 figures, accepted for publication in Physics of Plasma

    Laser-driven shock acceleration of monoenergetic ion beams

    Get PDF
    We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate 200\sim 200 MeV proton beams with state-of-the-art 100 TW class laser systems.Comment: 13 pages, 4 figures, accepted for publication in Physical Review Letter

    Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 μ\mum lasers

    Full text link
    Collisionless shock acceleration of protons and C6+^{6+} ions has been achieved by the interaction of a 1020^{20} W/cm2^2, 1 μ\mum laser with a near-critical density plasma. Ablation of the initially solid density target by a secondary laser allowed for systematic control of the plasma profile. This enabled the production of beams with peaked spectra with energies of 10-18 MeV/a.m.u. and energy spreads of 10-20%\% with up to 3x109^9 particles within these narrow spectral features. The narrow energy spread and similar velocity of ion species with different charge-to-mass ratio are consistent with acceleration by the moving potential of a shock wave. Particle-in-cell simulations show shock accelerated beams of protons and C6+^{6+} ions with energy distributions consistent with the experiments. Simulations further indicate the plasma profile determines the trade-off between the beam charge and energy and that with additional target optimization narrow energy spread beams exceeding 100 MeV/a.m.u. can be produced using the same laser conditions.Comment: Accepted for publication in Physical Review Accelerators and Beam

    Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency

    Get PDF
    Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunction

    Improved Filters for Angular Filter Refractometry

    Full text link
    Angular filter refractometry is an optical diagnostic that measures absolute contours of line-integrated density gradient by placing a filter with alternating opaque and transparent zones in the focal plane of a probe beam, which produce corresponding alternating light and dark regions in the image plane. Identifying transitions between these regions with specific zones on the angular filter (AF) allows the line-integrated density to be determined, but the sign of the density gradient at each transition is degenerate and must be broken using other information about the object plasma. Additional features from diffraction in the filter plane often complicate data analysis. In this paper, we present an improved AF design that uses a stochastic pixel pattern with a sinusoidal radial profile to minimize unwanted diffraction effects in the image caused by the sharp edges of the filter bands. We also present a technique in which a pair of AFs with different patterns on two branches of the same probe beam can be used to break the density gradient degeneracy. Both techniques are demonstrated using a synthetic diagnostic and data collected on the OMEGA EP laser

    DEVELOPMENT OF PICOSECOND CO 2 LASER DRIVER FOR AN MEV ION SOURCE

    Get PDF
    Abstract Laser-Driven Ion Acceleration in thin foils has demonstrated high-charge, low-emittance MeV ion beams with a picosecond duration. Such high-brightness beams are very attractive for a compact ion source or an injector for RF accelerators. However in the case of foils, scaling of the pulse repetition rate and improving shot-to-shot reproducibility is a serious challenge. CO 2 laser-plasma interactions provide a possibility for using a debris free gas jet for target normal sheath acceleration of ions. Gas jets have the advantage of precise density control around the critical plasma density for 10 μm pulses (10 19 cm -3 ) and can be run at 1-10 Hz. The master oscillator-power amplifier CO 2 laser system at the UCLA Neptune Laboratory is being upgraded to generate 1 J, 3 ps pulses at 1Hz. For this purpose, a new 8 atm CO 2 module is used to amplify a picosecond pulse to ~10 GW level. Final amplification is realized in a 1-m long TEA CO 2 amplifier, for which the field broadening mechanism provides the bandwidth necessary for short pulses. Modeling of the pulse amplification shows that ~0.3 TW power is achievable that should be sufficient for producing 1-3 MeV H + protons from the gas plasma
    corecore