73 research outputs found

    Tuning the structure and properties of nitrogen-rich covalent organic frameworks by molecular design and solid state reactions

    Get PDF

    Synthetic routes toward MOF nanomorphologies.

    Get PDF
    As metal–organic frameworks (MOFs) are coming of age, their structural diversity, exceptional porosity and inherent functionality need to be transferred into useful applications. Fashioning MOFs into various shapes and at the same time controlling their size constitute an essential step toward MOF-based devices. Moreover, downsizing MOFs to the nanoscale triggers a whole new set of properties distinguishing nanoMOFs from their bulk counterparts. Therefore, dimensionality-controlled miniaturization of MOFs enables the customised use of nanoMOFs for specific applications where suitable size and shape are key prerequisites. In this feature article we survey the burgeoning field of nanoscale MOF synthesis, ranging from classical protocols such as microemulsion synthesis all the way to microfluidic-based techniques and template-directed epitaxial growth schemes. Along these lines, we will fathom the feasibility of rationally designing specific MOF nanomorphologies—zero-, one- and two-dimensional nanostructures—and we will explore more complex “second-generation” nanostructures typically evolving from a high level of interfacial control. As a recurring theme, we will review recent advances made toward the understanding of nucleation and growth processes at the nanoscale, as such insights are expected to further push the borders of nanoMOF science

    Solving the COF trilemma: towards crystalline,stable and functional covalentorganic frameworks

    Get PDF
    Covalent organic frameworks (COFs) have entered the stage as a new generation of porous polymers which stand out by virtue of their crystallinity, diverse framework topologies and accessible pore systems. An important – but still underdeveloped – feature of COFs is their potentially superior stability in comparison to other porous materials. Achieving COFs which are simultaneously crystalline, stable, and functional is still challenging as reversible bond formation is one of the prime prerequisites for the crystallization of COFs. However, as the COF field matures new strategies have surfaced that bypass this crystallinity – stability dichotomy. Three major approaches for obtaining both stable and crystalline COFs have taken form in recent years: Tweaking the reaction conditions for reversible linkages, separating the order inducing step and the stability inducing step, and controlling the structural degrees of freedom during assembly and in the final COF. This review discusses rational approaches to stability and crystallinity engineering in COFs, which are apt at overcoming current challenges in COF design and open up new avenues to new real-world applications of COFs

    Additive-mediated size control of MOF nanoparticles

    Get PDF
    A fast synthesis approach toward sub-60 nm sized MOF nanoparticles was developed by employing auxiliary additives. Control over the size of HKUST-1 and IRMOF-3 particles was gained by adjusting the concentration and type of stabilizers. Colloidal solutions of the MOFs were used for the formation of optically homogeneous thin films by spin-coating

    Beyond Frameworks: Structuring Reticular Materials across Nano‐, Meso‐, and Bulk Regimes

    Get PDF
    Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal‐structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano‐, meso‐, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self‐assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society

    Ionothermal Synthesis of Imide‐Linked Covalent Organic Frameworks

    Get PDF
    Covalent organic frameworks (COFs) are an extensively studied class of porous materials, which distinguish themselves from other porous polymers in their crystallinity and high degree of modularity, enabling a wide range of applications. COFs are most commonly synthesized solvothermally, which is often a time‐consuming process and restricted to well‐soluble precursor molecules. Synthesis of polyimide‐linked COFs (PI‐COFs) is further complicated by the poor reversibility of the ring‐closing reaction under solvothermal conditions. Herein, we report the ionothermal synthesis of crystalline and porous PI‐COFs in zinc chloride and eutectic salt mixtures. This synthesis does not require soluble precursors and the reaction time is significantly reduced as compared to standard solvothermal synthesis methods. In addition to applying the synthesis to previously reported imide COFs, a new perylene‐based COF was also synthesized, which could not be obtained by the classical solvothermal route. In situ high‐temperature XRPD analysis hints to the formation of precursor–salt adducts as crystalline intermediates, which then react with each other to form the COF

    Single-Site Photocatalytic H-2 Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts

    Get PDF
    We demonstrate photocatalytic hydrogen evolution using COF photosensitizers with molecular proton reduction catalysts for the first time. With azine-linked N2-COF photosensitizer, chloro(pyridine)cobaloxime co-catalyst, and TEOA donor, H-2 evolution rate of 782,mu mol h(-1) g(-1) and TON of 54.4 has been obtained in a water/acetonitrile mixture. PXRD, solid-state spectroscopy, EM analysis, and quantum-chemical calculations suggest an outer sphere electron transfer from the COF to the co-catalyst which subsequently follows a monometallic pathway of H-2 generation from the Co-III-hydride and/or Co-II-hydride species

    Rational Strain Engineering in Delafossite Oxides for Highly Efficient Hydrogen Evolution Catalysis in Acidic Media

    Full text link
    The rational design of hydrogen evolution reaction (HER) electrocatalysts which are competitive with platinum is an outstanding challenge to make power-to-gas technologies economically viable. Here, we introduce the delafossites PdCrO2_2, PdCoO2_2 and PtCoO2_2 as a new family of electrocatalysts for the HER in acidic media. We show that in PdCoO2_2 the inherently strained Pd metal sublattice acts as a pseudomorphic template for the growth of a strained (by +2.3%) Pd rich capping layer under reductive conditions. The surface modification continuously improves the electrocatalytic activity by simultaneously increasing the exchange current density j0_0 from 2 to 5 mA/cmgeo2^2_{geo} and by reducing the Tafel slope down to 38 mV/decade, leading to overpotentials η10\eta_{10} < 15 mV for 10 mA/cmgeo2^2_{geo}, superior to bulk platinum. The greatly improved activity is attributed to the in-situ stabilization of a β\beta-palladium hydride phase with drastically enhanced surface catalytic properties with respect to pure or nanostructured palladium. These findings illustrate how operando induced electrodissolution can be used as a top-down design concept for rational surface and property engineering through the strain-stabilized formation of catalytically active phases

    Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework

    Get PDF
    Interactions between extended π-systems are often invoked as the main driving force for stacking and crystallization of 2D organic polymers. In covalent organic frameworks (COFs), the stacking strongly influences properties such as the accessibility of functional sites, pore geometry, and surface states, but the exact nature of the interlayer interactions is mostly elusive. The stacking mode is often identified as eclipsed based on observed high symmetry diffraction patterns. However, as pointed out by various studies, the energetics of eclipsed stacking are not favorable and offset stacking is preferred. This work presents lower and higher apparent symmetry modifications of the imine-linked TTI-COF prepared through high- and low-temperature reactions. Through local structure investigation by pair distribution function analysis and simulations of stacking disorder, we observe random local layer offsets in the low temperature modification. We show that while stacking disorder can be easily overlooked due to the apparent crystallographic symmetry of these materials, total scattering methods can help clarify this information and suggest that defective local structures could be much more prevalent in COFs than previously thought. A detailed analysis of the local structure helps to improve the search for and design of highly porous tailor-made materials
    corecore