16,534 research outputs found

    Relativistic Klein-Gordon-Maxwell multistream model for quantum plasmas

    Get PDF
    A multistream model for spinless electrons in a relativistic quantum plasma is introduced by means of a suitable fluid-like version of the Klein-Gordon-Maxwell system. The one and two-stream cases are treated in detail. A new linear instability condition for two-stream quantum plasmas is obtained, generalizing the previously known non-relativistic results. In both the one and two-stream cases, steady-state solutions reduce the model to a set of coupled nonlinear ordinary differential equations, which can be numerically solved, yielding a manifold of nonlinear periodic and soliton structures. The validity conditions for the applicability of the model are addressed

    Circumstellar Disks revealed by HH/KK Flux Variation Gradients

    Full text link
    The variability of young stellar objects (YSO) changes their brightness and color preventing a proper classification in traditional color-color and color magnitude diagrams. We have explored the feasibility of the flux variation gradient (FVG) method for YSOs, using HH and KK band monitoring data of the star forming region RCW\,38 obtained at the University Observatory Bochum in Chile. Simultaneous multi-epoch flux measurements follow a linear relation FH=α+βFKF_{H}=\alpha + \beta \cdot F_{K} for almost all YSOs with large variability amplitude. The slope β\beta gives the mean HKHK color temperature TvarT_{var} of the varying component. Because TvarT_{var} is hotter than the dust sublimation temperature, we have tentatively assigned it to stellar variations. If the gradient does not meet the origin of the flux-flux diagram, an additional non- or less-varying component may be required. If the variability amplitude is larger at the shorter wavelength, e.g. α<0\alpha < 0, this component is cooler than the star (e.g. a circumstellar disk); vice versa, if α>0\alpha > 0, the component is hotter like a scattering halo or even a companion star. We here present examples of two YSOs, where the HKHK FVG implies the presence of a circumstellar disk; this finding is consistent with additional data at JJ and LL. One YSO shows a clear KK-band excess in the JHKJHK color-color diagram, while the significance of a KK-excess in the other YSO depends on the measurement epoch. Disentangling the contributions of star and disk it turns out that the two YSOs have huge variability amplitudes (35\sim 3-5\,mag). The HKHK FVG analysis is a powerful complementary tool to analyze the varying components of YSOs and worth further exploration of monitoring data at other wavelengths.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Generalized Hamiltonian structures for Ermakov systems

    Full text link
    We construct Poisson structures for Ermakov systems, using the Ermakov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible

    Quantum Antiferromagnetism in Quasicrystals

    Full text link
    The antiferromagnetic Heisenberg model is studied on a two-dimensional bipartite quasiperiodic lattice. The distribution of local staggered magnetic moments is determined on finite square approximants with up to 1393 sites, using the Stochastic Series Expansion Quantum Monte Carlo method. A non-trivial inhomogeneous ground state is found. For a given local coordination number, the values of the magnetic moments are spread out, reflecting the fact that no two sites in a quasicrystal are identical. A hierarchical structure in the values of the moments is observed which arises from the self-similarity of the quasiperiodic lattice. Furthermore, the computed spin structure factor shows antiferromagnetic modulations that can be measured in neutron scattering and nuclear magnetic resonance experiments. This generic model is a first step towards understanding magnetic quasicrystals such as the recently discovered Zn-Mg-Ho icosahedral structure.Comment: RevTex, 4 pages with 5 figure

    On the linearization of the generalized Ermakov systems

    Full text link
    A linearization procedure is proposed for Ermakov systems with frequency depending on dynamic variables. The procedure applies to a wide class of generalized Ermakov systems which are linearizable in a manner similar to that applicable to usual Ermakov systems. The Kepler--Ermakov systems belong into this category but others, more generic, systems are also included

    Visualization of oxygen distribution patterns caused by coral and algae.

    Get PDF
    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones

    On the Hamiltonian structure of Ermakov systems

    Full text link
    A canonical Hamiltonian formalism is derived for a class of Ermakov systems specified by several different frequency functions. This class of systems comprises all known cases of Hamiltonian Ermakov systems and can always be reduced to quadratures. The Hamiltonian structure is explored to find exact solutions for the Calogero system and for a noncentral potential with dynamic symmetry. Some generalizations of these systems possessing exact solutions are also identified and solved
    corecore