82 research outputs found

    CD4 T-cell memory responses to viral infections of humans show pronounced immunodominance independent of duration or viral persistence

    Get PDF
    Little is known concerning immunodominance within the CD4 T-cell response to viral infections and its persistence into longterm memory. We tested CD4 T-cell reactivity against each viral protein in persons immunized with vaccinia virus (VV), either recently or more than 40 years ago, as a model self-limited v

    Varicella Zoster Virus ORF25 Gene Product: An Essential Hub Protein Linking Encapsidation Proteins and the Nuclear Egress Complex

    Get PDF
    Varicella zoster virus (VZV) ORF25 is a 156 amino acid protein belonging to the approximately 40 core proteins that are conserved throughout the Herpesviridae. By analogy to its functional orthologue UL33 in Herpes simplex virus 1 (HSV-1), ORF25 is thought to be a component of the terminase complex. To investigate how cleavage and encapsidation of viral DNA links to the nuclear egress of mature capsids in VZV, we tested 10 VZV proteins that are predicted to be involved in either of the two processes for protein interactions against each other using three independent protein-protein interaction (PPI) detection systems: the yeast-two-hybrid (Y2H) system, a luminescence based MBP pull-down interaction screening assay (LuMPIS), and a bioluminescence resonance energy transfer (BRET) assay. A set of 20 interactions was consistently detected by at least 2 methods and resulted in a dense interaction network between proteins associated in encapsidation and nuclear egress. The results indicate that the terminase complex in VZV consists of ORF25, ORF30, and ORF45/42 and support a model in which both processes are closely linked to each other. Consistent with its role as a central hub for protein interactions, ORF25 is shown to be essential for VZV replication.Fil: Vizoso Pinto, María Guadalupe. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute. Cátedra Virology; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Pothineni, Venkata R.. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute. Cátedra Virology; AlemaniaFil: Haase, Rudolf. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute. Cátedra Virology; AlemaniaFil: Woidy, Mathias. Ludwig Maximilians Universitat; AlemaniaFil: Lotz Havla, Amelie. Ludwig Maximilians Universitat; AlemaniaFil: Gersting, Soren W.. Ludwig Maximilians Universitat; AlemaniaFil: Muntau, Ania C.. Ludwig Maximilians Universitat; AlemaniaFil: Haas, Jurgen. Ludwig Maximilians Universitat. Max Von Pettenkofer Institute. Cátedra Virology; AlemaniaFil: Sommer, Marvin. University of Stanford; Estados UnidosFil: Arvin, Ann M.. University of Stanford; Estados UnidosFil: Baiker, Armin. Bavarian Health and Food Safety Authority; Alemani

    The SARS-coronavirus-host interactome

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock

    A Methodology for Remote Microwave Sterilization Applicable to the Coronavirus and Other Pathogens using Retrodirective Antenna Arrays

    Get PDF
    This paper describes an innovative remote surface sterilization approach that could be applicable to the new coronavirus. The process is based on the application of a liquid film on the surface or object under sterilization (OUS). A beacon signal is required to self-steer the transmitted power from the designed retrodirective antenna array (RDA) towards the OUS; once the liquid film reaches the required temperature, the sterilization can be considered complete. Results suggest that the process takes 5 minutes or less for an angular coverage range over 60 whilst abiding by the relevant safety protocols. This paper also models the power incident onto the OUS and results are consistent with full-wave simulations. A practical RDA system is developed operating at 2.5 GHz and tested through the positioning of a representative target aperture surface. Measurements, developed by sampling the power transmitted by the heterodyne RDA, are reported for various distances and angles, operating in the near-field of the system. To further validate the methodology, an additional experiment investigating virus deactivation through microwave heating was also reported using live Coronavirus (strain 229E). Possible applications of the method include the sterilization of ambulances, medical equipment, and internet of things (IoT) devices

    Case report: Central venous catheter thrombosis complicated by chronic thromboembolic disease/pulmonary hypertension in two children requiring parenteral nutrition

    Get PDF
    Chronic thromboembolic pulmonary hypertension is a rare but life-threatening complication of long-term central venous catheters (CVC) in children. However, evidence in terms of potential treatment strategies and outcome data remains scarce. We describe two cases of CVC-related thrombosis (Hickman-catheter) complicated by recurrent pulmonary emboli. One patient experienced a complete thromboembolic obstruction of the right pulmonary artery with normal pulmonary pressures and the second patient suffered from a central thromboembolic obstruction of both pulmonary arteries associated with severe pulmonary hypertension. Both patients successfully underwent surgical thromboendarterectomy with deep hypothermic circulatory arrest

    Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate Apoptosis

    Get PDF
    Kaposi's sarcoma herpesvirus (KSHV) encodes a cluster of twelve micro (mi)RNAs, which are abundantly expressed during both latent and lytic infection. Previous studies reported that KSHV is able to inhibit apoptosis during latent infection; we thus tested the involvement of viral miRNAs in this process. We found that both HEK293 epithelial cells and DG75 cells stably expressing KSHV miRNAs were protected from apoptosis. Potential cellular targets that were significantly down-regulated upon KSHV miRNAs expression were identified by microarray profiling. Among them, we validated by luciferase reporter assays, quantitative PCR and western blotting caspase 3 (Casp3), a critical factor for the control of apoptosis. Using site-directed mutagenesis, we found that three KSHV miRNAs, miR-K12-1, 3 and 4-3p, were responsible for the targeting of Casp3. Specific inhibition of these miRNAs in KSHV-infected cells resulted in increased expression levels of endogenous Casp3 and enhanced apoptosis. Altogether, our results suggest that KSHV miRNAs directly participate in the previously reported inhibition of apoptosis by the virus, and are thus likely to play a role in KSHV-induced oncogenesis

    Abortive Lytic Reactivation of KSHV in CBF1/CSL Deficient Human B Cell Lines

    Get PDF
    Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade
    • …
    corecore