7 research outputs found

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed.We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes.To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression.The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia

    No full text
    Importance: Uncertainty currently exists about whether the same genetic variants are associated with susceptibility to low myopia (LM) and high myopia (HM) and to myopia and hyperopia. Addressing this question is fundamental to understanding the genetics of refractive error and has clinical relevance for genotype-based prediction of children at risk for HM and for identification of new therapeutic targets. / Objective: To assess whether a common set of genetic variants are associated with susceptibility to HM, LM, and hyperopia. / Design, Setting, and Participants: This genetic association study assessed unrelated UK Biobank participants 40 to 69 years of age of European and Asian ancestry. Participants 40 to 69 years of age living in the United Kingdom were recruited from January 1, 2006, to October 31, 2010. Of the total sample of 502 682 participants, 117 279 (23.3%) underwent an ophthalmic assessment. Data analysis was performed from December 12, 2019, to June 23, 2020. / Exposures: Four refractive error groups were defined: HM, −6.00 diopters (D) or less; LM, −3.00 to −1.00 D; hyperopia, +2.00 D or greater; and emmetropia, 0.00 to +1.00 D. Four genome-wide association study (GWAS) analyses were performed in participants of European ancestry: (1) HM vs emmetropia, (2) LM vs emmetropia, (3) hyperopia vs emmetropia, and (4) LM vs hyperopia. Polygenic risk scores were generated from GWAS summary statistics, yielding 4 sets of polygenic risk scores. Performance was assessed in independent replication samples of European and Asian ancestry. / Main Outcomes and Measures: Odds ratios (ORs) of polygenic risk scores in replication samples. / Results: A total of 51 841 unrelated individuals of European ancestry and 2165 unrelated individuals of Asian ancestry were assigned to a specific refractive error group and included in our analyses. Polygenic risk scores derived from all 4 GWAS analyses were predictive of all categories of refractive error in both European and Asian replication samples. For example, the polygenic risk score derived from the HM vs emmetropia GWAS was predictive in the European sample of HM vs emmetropia (OR, 1.58; 95% CI, 1.41-1.77; P = 1.54 × 10−15) as well as LM vs emmetropia (OR, 1.15; 95% CI, 1.07-1.23; P = 8.14 × 10−5), hyperopia vs emmetropia (OR, 0.83; 95% CI, 0.77-0.89; P = 4.18 × 10−7), and LM vs hyperopia (OR, 1.45; 95% CI, 1.33-1.59; P = 1.43 × 10−16). / Conclusions and Relevance: Genetic risk variants were shared across HM, LM, and hyperopia and across European and Asian samples. Individuals with HM inherited a higher number of variants from among the same set of myopia-predisposing alleles and not different risk alleles compared with individuals with LM. These findings suggest that treatment interventions targeting common genetic risk variants associated with refractive error could be effective against both LM and HM

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error

    No full text

    Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error

    Get PDF
    corecore