3 research outputs found

    Stratifying patients with peripheral neuropathic pain based on sensory profiles : algorithm and sample size recommendations

    Get PDF
    In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and/or allodynia, or loss of thermal detection and mild mechanical hyperalgesia and/or allodynia. Here, we present an algorithm for allocation of individual patients to these subgroups. The algorithm is nondeterministic-ie, a patient can be sorted to more than one phenotype-and can separate patients with neuropathic pain from healthy subjects (sensitivity: 78%, specificity: 94%). We evaluated the frequency of each phenotype in a population of patients with painful diabetic polyneuropathy (n = 151), painful peripheral nerve injury (n = 335), and postherpetic neuralgia (n = 97) and propose sample sizes of study populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping and not additive). In peripheral nerve injury, frequencies were 37%, 59%, and 50%, and in postherpetic neuralgia, frequencies were 31%, 63%, and 46%. For parallel study design, either the estimated effect size of the treatment needs to be high (> 0.7) or only phenotypes that are frequent in the clinical entity under study can realistically be performed. For crossover design, populations under 200 patients screened are sufficient for all phenotypes and clinical entities with a minimum estimated treatment effect size of 0.5.Peer reviewe

    Corrigendum to ‘‘Value of quantitative sensory testing in neurological and pain disorders : NEUPSIG consensus’’ [PAIN® 2013;154(9): 1807–1819]

    No full text
    Quantitative sensory testing (QST) is a psychophysical method used to quantify somatosensory function in response to controlled stimuli in healthy subjects and patients. Although QST shares similarities with the quantitative assessment of hearing or vision, which is extensively used in clinical practice and research, it has not gained a large acceptance among clinicians for many reasons, and in significant part because of the lack of information about standards for performing QST, its potential utility, and interpretation of results. A consensus meeting was convened by the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain (NeuPSIG) to formulate recommendations for conducting QST in clinical practice and research. Research studies have confirmed the utility of QST for the assessment and monitoring of somatosensory deficits, particularly in diabetic and small fiber neuropathies; the assessment of evoked pains (mechanical and thermal allodynia or hyperalgesia); and the diagnosis of sensory neuropathies. Promising applications include the assessment of evoked pains in large-scale clinical trials and the study of conditioned pain modulation. In clinical practice, we recommend the use QST for screening for small and large fiber neuropathies; monitoring of somatosensory deficits; and monitoring of evoked pains, allodynia, and hyperalgesia. QST is not recommended as a stand-alone test for the diagnosis of neuropathic pain. For the conduct of QST in healthy subjects and in patients, we recommend use of predefined standardized stimuli and instructions, validated algorithms of testing, and reference values corrected for anatomical site, age, and gender. Interpretation of results should always take into account the clinical context, and patients with language and cognitive difficulties, anxiety, or litigation should not be considered eligible for QST. When appropriate standards, as discussed here, are applied, QST can provide important and unique information about the functional status of somatosensory system, which would be complementary to already existing clinical methods
    corecore