62 research outputs found

    Pharmacological Nature of the Purinergic P2Y Receptor Subtypes That Participate in the Blood Pressure Changes Produced by ADPβS in Rats

    Get PDF
    Purine nucleosides (adenosine) and nucleotides such as adenosine mono/di/triphosphate (AMP/ADP/ATP) may produce complex cardiovascular responses. For example, adenosine-5′-(β-thio)-diphosphate (ADPβS; a stable synthetic analogue of ADP) can induce vasodilatation/vasodepressor responses by endothelium-dependent and independent mechanisms involving purinergic P2Y receptors; however, the specific subtypes participating in these responses remain unknown. Therefore, this study investigated the receptor subtypes mediating the blood pressure changes induced by intravenous bolus of ADPβS in male Wistar rats in the absence and presence of central mechanisms with the antagonists MRS2500 (P2Y1), PSB0739 (P2Y12), and MRS2211 (P2Y13). For this purpose, 120 rats were divided into 60 anaesthetised rats and 60 pithed rats, and further subdivided into four groups (n = 30 each), namely: (a) anaesthetised rats, (b) anaesthetised rats with bilateral vagotomy, (c) pithed rats, and (d) pithed rats continuously infused (intravenously) with methoxamine (an α1-adrenergic agonist that restores systemic vascular tone). We observed, in all four groups, that the immediate decreases in diastolic blood pressure produced by ADPβS were exclusively mediated by peripheral activation of P2Y1 receptors. Nevertheless, the subsequent increases in systolic blood pressure elicited by ADPβS in pithed rats infused with methoxamine probably involved peripheral activation of P2Y1, P2Y12, and P2Y13 receptors.</p

    Pharmacological Nature of the Purinergic P2Y Receptor Subtypes That Participate in the Blood Pressure Changes Produced by ADPβS in Rats

    Get PDF
    Purine nucleosides (adenosine) and nucleotides such as adenosine mono/di/triphosphate (AMP/ADP/ATP) may produce complex cardiovascular responses. For example, adenosine-5′-(β-thio)-diphosphate (ADPβS; a stable synthetic analogue of ADP) can induce vasodilatation/vasodepressor responses by endothelium-dependent and independent mechanisms involving purinergic P2Y receptors; however, the specific subtypes participating in these responses remain unknown. Therefore, this study investigated the receptor subtypes mediating the blood pressure changes induced by intravenous bolus of ADPβS in male Wistar rats in the absence and presence of central mechanisms with the antagonists MRS2500 (P2Y1), PSB0739 (P2Y12), and MRS2211 (P2Y13). For this purpose, 120 rats were divided into 60 anaesthetised rats and 60 pithed rats, and further subdivided into four groups (n = 30 each), namely: (a) anaesthetised rats, (b) anaesthetised rats with bilateral vagotomy, (c) pithed rats, and (d) pithed rats continuously infused (intravenously) with methoxamine (an α1-adrenergic agonist that restores systemic vascular tone). We observed, in all four groups, that the immediate decreases in diastolic blood pressure produced by ADPβS were exclusively mediated by peripheral activation of P2Y1 receptors. Nevertheless, the subsequent increases in systolic blood pressure elicited by ADPβS in pithed rats infused with methoxamine probably involved peripheral activation of P2Y1, P2Y12, and P2Y13 receptors.</p

    Pharmacological Profile of the Purinergic P2Y Receptors That Modulate, in Response to ADPβS, the Vasodepressor Sensory CGRPergic Outflow in Pithed Rats

    Get PDF
    Calcitonin gene-related peptide (CGRP), an endogenous neuropeptide released from perivascular sensory nerves, exerts a powerful vasodilatation. Interestingly, adenosine triphosphate (ATP) stimulates the release of CGRP by activation of prejunctional P2X2/3 receptors, and adenosine 5′-O-2-thiodiphosphate (ADPβS), a stable adenosine diphosphate (ADP) analogue, produces vasodilator/vasodepressor responses by endothelial P2Y1 receptors. Since the role of ADP in the prejunctional modulation of the vasodepressor sensory CGRPergic drive and the receptors involved remain unknown, this study investigated whether ADPβS inhibits this CGRPergic drive. Accordingly, 132 male Wistar rats were pithed and subsequently divided into two sets. In set 1, ADPβS (5.6 and 10 µg/kg·min) inhibited the vasodepressor CGRPergic responses by electrical stimulation of the spinal T9–T12 segment. This inhibition by ADPβS (5.6 µg/kg·min) was reverted after i.v. administration of the purinergic antagonists MRS2500 (300 µg/kg; P2Y1) or MRS2211 (3000 µg/kg; P2Y13), but not by PSB0739 (300 µg/kg; P2Y12), MRS2211 (1000 µg/kg; P2Y13) or the KATP blocker glibenclamide (20 mg/kg). In set 2, ADPβS (5.6 µg/kg·min) failed to modify the vasodepressor responses to exogenous α-CGRP. These results suggest that ADPβS inhibits CGRP release in perivascular sensory nerves. This inhibition, apparently unrelated to activation of ATP-sensitive K+ channels, involves P2Y1 and probably P2Y13, but not P2Y12 receptors.</p

    Progesterone distribution in the trigeminal system and its role to modulate sensory neurotransmission: influence of sex

    Get PDF
    Background: Women are disproportionately affected by migraine, representing up to 75% of all migraine cases. This discrepancy has been proposed to be influenced by differences in hormone levels between the sexes. One such hormone is progesterone. Calcitonin gene-related peptide (CGRP) system is an important factor in migraine pathophysiology and could be influenced by circulating hormones. The purpose of this study was to investigate the distribution of progesterone and its receptor (PR) in the trigeminovascular system, and to examine the role of progesterone to modulate sensory neurotransmission.Methods: Trigeminal ganglion (TG), hypothalamus, dura mater, and the basilar artery from male and female rats were carefully dissected. Expression of progesterone and PR proteins, and mRNA levels from TG and hypothalamus were analyzed by immunohistochemistry and real-time quantitative PCR. CGRP release from TG and dura mater were measured using an enzyme-linked immunosorbent assay. In addition, the vasomotor effect of progesterone on male and female basilar artery segments was investigated with myography.Results: Progesterone and progesterone receptor -A (PR-A) immunoreactivity were found in TG. Progesterone was located predominantly in cell membranes and in Aδ-fibers, and PR-A was found in neuronal cytoplasm and nucleus, and in satellite glial cells. The number of positive progesterone immunoreactive cells in the TG was higher in female compared to male rats. The PR mRNA was expressed in both hypothalamus and TG; however, the PR expression level was significantly higher in the hypothalamus. Progesterone did not induce a significant change neither in basal level nor upon stimulated release of CGRP from dura mater or TG in male or female rats when compared to the vehicle control. However, pre-treated with 10 µM progesterone weakly enhanced capsaicin induced CGRP release observed in the dura mater of male rats. Similarly, in male basilar arteries, progesterone significantly amplified the dilation in response to capsaicin.Conclusions: In conclusion, these results highlight the potential for progesterone to modulate sensory neurotransmission and vascular responses in a complex manner, with effects varying by sex, tissue type, and the nature of the stimulus. Further investigations are needed to elucidate the underlying mechanisms and physiological implications of these findings

    Comparison of the vasodilator responses of isolated human and rat middle meningeal arteries to migraine related compounds

    Get PDF
    Background: Migraine attacks occur spontaneously in those who suffer from the condition, but migraine-like attacks can also be induced artificially by a number of substances. Previously published evidence makes the meninges a likely source of migraine related pain. This article investigates the effect of several vasodilators on meningeal arteries in order to find a connection between the effect of a substance on a meningeal vessel and its ability to artificially induce migraine. Methods: A myograph setup was used to test the vasodilator properties of the substances acetylcholine (ACh), sodium nitroprusside (SNP), sildenafil, prostaglandin E2 (PGE2), pituitary adenylate cyclase activating peptide-38 (PACAP-38), calcitonin gene-related peptide (CGRP) and NaCl buffer on meningeal arteries from human and rat. An unpaired t-test was used to statistically compare the mean Emax(%) at the highest concentration of each substance to the Emax(%) of NaCl buffer. Results: In the human experiments, all substances except PACAP-38 had an Emax (%) higher than the NaCl buffer, but the difference was only significant for SNP and CGRP. For the human samples, clinically tested antimigraine compounds (sumatriptan, telcagepant) were applied to the isolated arteries, and both induced a significant decrease of the effect of exogenously administrated CGRP. In experiments on rat middle meningeal arteries, pre-contracted with PGF2α, similar tendencies were seen. When the pre-contraction was switched to K+ in a separate series of experiments, CGRP and sildenafil significantly relaxed the arteries. Conclusions: Still no definite answer can be given as to why pain is experienced during an attack of migraine. No clear correlation was found between the efficacy of a substance as a meningeal artery vasodilator in human and the ability to artificially induce migraine or the mechanism of action. Vasodilatation could be an essential trigger, but only in conjunction with other unknown factors. The vasculature of the meninges likely contributes to the propagation of the migrainal cascade of symptoms, but more research is needed before any conclusions can be drawn about the nature of this contribution

    Extracellular purinergic signaling in pancreas

    Get PDF

    Xenobiotic Exposure and Migraine-Associated Signaling:A Multimethod Experimental Study Exploring Cellular Assays in Combination with Ex Vivo and In Vivo Mouse Models

    Get PDF
    BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or formula presented . None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (formula presented ). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.</p

    Characterization of the trigeminovascular actions of several adenosine A2A receptor antagonists in an in vivo rat model of migraine

    Get PDF
    Background: Migraine is considered a neurovascular disorder, but its pathophysiological mechanisms are not yet fully understood. Adenosine has been shown to increase in plasma during migraine attacks and to induce vasodilation in several blood vessels; however, it remains unknown whether adenosine can interact with the trigeminovascular system. Moreover, caffeine, a non-selective adenosine receptor antagonist, is included in many over the counter anti-headache/migraine treatments. Methods: This study used the rat closed cranial window method to investigate in vivo the effects of the adenosine A2A receptor antagonists with varying selectivity over A1 receptors; JNJ-39928122, JNJ-40529749, JNJ-41942914, JNJ-40064440 or JNJ-41501798 (0.3–10 mg/kg) on the vasodilation of the middle meningeal artery produced by either CGS21680 (an adenosine A2A receptor agonist) or endogenous CGRP (released by periarterial electrical stimulation). Results: Regarding the dural meningeal vasodilation produced neurogenically or pharmacologically, all JNJ antagonists: (i) did not affect neurogenic vasodilation but (ii) blocked the vasodilation produced by CGS21680, with a blocking potency directly related to their additional affinity for the adenosine A1 receptor. Conclusions: These results suggest that vascular adenosine A2A (and, to a certain extent, also A1) receptors mediate the CGS21680-induced meningeal vasodilation. These receptors do not appear to modulate prejunctionally the sensory release of CGRP. Prevention of meningeal arterial dilation might be predictive for anti-migraine drugs, and since none of these JNJ antagonists modified per se blood pressure, selective A2A receptor antagonism may offer a novel approach to antimigraine therapy which remains to be investigated in clinical trials
    corecore