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Abstract: Calcitonin gene-related peptide (CGRP), an endogenous neuropeptide released from

perivascular sensory nerves, exerts a powerful vasodilatation. Interestingly, adenosine triphosphate

(ATP) stimulates the release of CGRP by activation of prejunctional P2X2/3 receptors, and adeno-

sine 5′-O-2-thiodiphosphate (ADPβS), a stable adenosine diphosphate (ADP) analogue, produces

vasodilator/vasodepressor responses by endothelial P2Y1 receptors. Since the role of ADP in the

prejunctional modulation of the vasodepressor sensory CGRPergic drive and the receptors involved

remain unknown, this study investigated whether ADPβS inhibits this CGRPergic drive. Accordingly,

132 male Wistar rats were pithed and subsequently divided into two sets. In set 1, ADPβS (5.6 and

10 µg/kg·min) inhibited the vasodepressor CGRPergic responses by electrical stimulation of the

spinal T9–T12 segment. This inhibition by ADPβS (5.6 µg/kg·min) was reverted after i.v. administra-

tion of the purinergic antagonists MRS2500 (300 µg/kg; P2Y1) or MRS2211 (3000 µg/kg; P2Y13), but

not by PSB0739 (300 µg/kg; P2Y12), MRS2211 (1000 µg/kg; P2Y13) or the KATP blocker glibenclamide

(20 mg/kg). In set 2, ADPβS (5.6 µg/kg·min) failed to modify the vasodepressor responses to ex-

ogenous α-CGRP. These results suggest that ADPβS inhibits CGRP release in perivascular sensory

nerves. This inhibition, apparently unrelated to activation of ATP-sensitive K+ channels, involves

P2Y1 and probably P2Y13, but not P2Y12 receptors.

Keywords: ADPβS; glibenclamide; pithed rat; purinergic receptors; vasodepressor sensory

CGRPergic tone

1. Introduction

Calcitonin gene-related peptide (CGRP) is a member of the endogenous peptides
family, formed by 37 amino acids [1], which (i) was identified in plasma in the 1980s and
subsequently in the spinal cord [2]; (ii) produces a potent vasodepressor effect, erythema
and an increase in local blood flow [3,4]; and (iii) is mostly released by C sensory nerve
fibres mainly emerging from dorsal root ganglia, trigeminal ganglia and heterogeneous
small and medium-sized neurons [5–7]. Once released by sensory neurons, CGRP binds to
the CGRP receptor, which is coupled to Gαs proteins and consists of two proteins, namely:
(i) calcitonin-like receptor (CLR) and (ii) receptor activity modifying protein (RAMP1) [8,9].

The vasodilator actions of CGRP in rodents are mediated by indirect and direct vascu-
lar pathways that include (i) endothelium-dependent mechanisms associated with increases
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in cyclic adenosine monophosphate (cAMP), activation of protein kinase A (PKA), nitric
oxide (NO) release and opening of adenosine triphosphate (ATP)-sensitive K+ channels
(KATP channels) [10–12]; and (ii) musculotropic (vascular smooth muscle) mechanisms
related to increases in cAMP, activation of PKA and opening of KATP channels [4,13,14].
Accordingly, stimulation of the vasodepressor sensory CGRPergic drive in normotensive
and hypertensive rats results in a decrease in diastolic blood pressure (DBP) that involves
both NO-dependent and NO-independent vasodilator pathways in peripheral resistance
arteries [3,15–20].

CGRP release from sensory nerves can be prejunctionally stimulated by endoge-
nous compounds such as anandamide [21], prostaglandins [22], bradykinin [22], acetyl-
choline [23] or ATP [24]. Moreover, our group has reported that in pithed rats (which have
an inactive central nervous system) the vasodepressor sensory CGRPergic drive (which
involves CGRP release from perivascular sensory nerves [3,4]) can be inhibited by prejunc-
tional 5-HT1B/1D [25–27], D2-like [28], α2-adrenergic [29] or H3 receptors [30]. Interestingly
(i) ATP stimulates the CGRPergic drive by activating prejunctional P2X2/3 receptors which,
in turn, results in systemic vasodilatation and a decrease in DBP [24,31–34]; (ii) adenosine
diphosphate (ADP) is more potent than ATP and related compounds to produce vasodilata-
tion and vasodepressor responses [35]; and (iii) adenosine 5′-O-2-thiodiphosphate (ADPβS;
a stable and non-hydrolysable analogue of ADP) lowers DBP in anaesthetized rats [33],
inhibits CGRP release from rat sensory neurons in dural arteries and trigeminal ganglion in
situ by P2Y13 receptors [33], and inhibits the cardioaccelerator sympathetic drive in pithed
rats mainly by P2Y12 receptors and less prominently by P2Y13 receptors [36].

Pharmacologically, ADPβS is an agonist with a preferential activity at purinergic P2Y1

(Gαq-coupled), P2Y12 (Gαi/o-coupled) and P2Y13 (Gαi/o-coupled) receptors [37–43]. These
receptors are widely expressed in the cardiovascular system, particularly modulating the
function of endothelium, vascular smooth muscle, and autonomic nerves that innervate
blood vessels and the heart [38,40,43–48]. Nevertheless, the role of P2Y1, P2Y12 and/or
P2Y13 receptors in the modulation of the vasodepressor sensory CGRPergic drive is still
unknown. Hence, in this pharmacological study in pithed rats we analysed the inhibition
by ADPβS of the vasodepressor sensory CGRPergic drive by using the P2Y receptor
antagonists MRS2500 (P2Y1), PSB0739 (P2Y12) and MRS2211 (P2Y13) [42,49,50], as well as
the KATP channel blocker glibenclamide [10–12].

Our results suggest that ADPβS-induced inhibition of the vasodepressor sensory
CGRPergic outflow, which seems to be unrelated to activation of ATP-sensitive K+ chan-
nels, could be mediated by activation of prejunctional P2Y1 and probably P2Y13, but not
P2Y12, receptors.

2. Results

2.1. Systemic Haemodynamic Variables

The baseline values of DBP and heart rate after i.v. treatment with gallamine (25 mg/kg)
followed by the continuous infusions of hexamethonium (2 mg/kg·min) and methoxamine
(15–20 µg/kg·min) in the 132 pithed rats were 109 ± 9 mm Hg and 344 ± 3 beats/min.
Table 1 shows that baseline DBP values (i) were significantly decreased (p < 0.05) 10 min
after the i.v. continuous infusion of 5.6 or 10 µg/kg·min ADPβS had been started, and
remained so during this infusion; and (ii) remained without significant changes (p > 0.05)
10 min after the i.v. infusions of 0.02 mL/min bidistilled water or 3 µg/kg·min ADPβS,
or the i.v. bolus injections of 1 mL/kg bidistilled water, 300 µg/kg MRS2500, 300 µg/kg
PSB0739, 1000 µg/kg MRS2211, 3000 µg/kg MRS2211, 1 mL/kg glibenclamide vehicle
(33% PEG, 33% ethanol and 34% NaOH 0.2 M) or 20 mg/kg glibenclamide. The potential
influence of this effect of ADPβS (or any other treatment) on the vasodepressor responses
by electrical stimulation and exogenous α-CGRP was minimized by calculating these re-
sponses as a % change in DBP, as previously established [4,26–30]. Furthermore, it is to
be noted that the decrease in DBP produced by ADPβS (5.6 µg/kg·min) (i) was blocked
after i.v. administration of MRS2500 (300 µg/kg), glibenclamide vehicle (1 mL/kg) or



Pharmaceuticals 2023, 16, 475 3 of 22

glibenclamide (20 mg/kg); and (ii) remained unaltered after i.v. administration of MRS2211
(1000 µg/kg), MRS2211 (3000 µg/kg) or PSB0739 (300 µg/kg).

Table 1. Values of diastolic blood pressure (DBP) in pithed rats after i.v. treatment with gallamine

followed by the continuous infusions of hexamethonium and methoxamine before (baseline) and

10 min after i.v. administration of several compounds.

Treatment Doses DBP (mm Hg)

Before After 10 min % Change DBP

Control (no treatment) 108 ± 4 − 0 ± 0
Bidistilled water 1 mL/kg a 108 ± 4 113 ± 4 4 ± 3
Bidistilled water 0.02 mL/min b 103 ± 2 103 ± 3 1 ± 1

ADPβS (adenosine 5′-O-2-
thiodiphosphate)

3 µg/kg·min b 116 ± 5 110 ± 5 −5 ± 2

5.6 µg/kg·min b 111 ± 3 90 ± 5 ∆ −19 ± 3 ∆♦�

10 µg/kg·min b 105 ± 3 73 ± 3 ∆ −30 ± 5 ∆♦�#

MRS2500 300 µg/kg a 110 ± 3 111 ± 3 2 ± 3
MRS2500 + ADPβS 300 µg/kg a + 5.6 µg/kg·min b 114 ± 6 114 ± 5 0 ± 1
PSB0739 300 µg/kg a 106 ± 4 109 ± 4 2 ± 2
PSB0739 + ADPβS 300 µg/kg a + 5.6 µg/kg·min b 116 ± 4 97 ± 5 −17 ± 2 ∆♦�

MRS2211 1000 µg/kga 109 + 3 109 ± 3 0 ± 0
MRS2211 + ADPβS 1000 µg/kga + 5.6 µg/kg·minb 114 ± 4 94 ± 5 −18 ± 3 ∆♦�

MRS2211 3000 µg/kga 110 ± 2 110 ± 2 0 ± 0
MRS2211 + ADPβS 3000 µg/kg a + 5.6 µg/kg·min b 120 ± 3 103 ± 3 −13 ± 2 ∆♦�

Vehicle of glibenclamide 1 mL/kg a 107 ± 4 106 ± 5 −1 ± 2
Vehicle of glibenclamide + ADPβS 1 mL/kg a + 5.6 µg/kg·min b 106 ± 3 106 ± 3 0 ± 0
Glibenclamide 20 mg/kg a 108 ± 2 108 ± 2 0 ± 0
Glibenclamide + ADPβS 20 mg/kg a + 5.6 µg/kg·min b 103 ± 1 102 ± 2 −1 ± 2

Doses were given as a i.v. bolus injections or b i.v. continuous infusions. (∆) p < 0.05 versus control;
(♦) p < 0.05 versus continuous infusions of vehicle; (�) p < 0.05 versus adenosine 5′-O-2-thiodiphosphate (ADPβS
[3 µg/kg·min]); (#) p < 0.05 versus ADPβS (5.6 µg/kg·min). Values are indicated as means ± SEM (n = 6 for
each subgroup).

On the other hand, it must be emphasised that the baseline values of heart rate
remained without changes (p > 0.05) after i.v. treatment with any of the above doses of
compounds, as previously reported in pithed rats [36]. Hence, for the sake of clarity, these
data are not shown.

2.2. Effect of Vehicle or ADPβS Infusions on the Vasodepressor Responses by Electrical Sensory
Stimulation or Exogenous α-CGRP

Figure 1 compares the decreases in DBP produced by (i) electrical sensory stimulation
(0.56–5.6 Hz; S-R curves, upper panel) and (ii) i.v. injections of α-CGRP (0.1–1 µg/kg; D-R
curves, lower panel) in control animals (receiving no treatment), and in animals receiving
infusions of bidistilled water (vehicle; 0.02 mL/min) or ADPβS (3 or 5.6 or 10 µg/kg·min).

Electrical sensory stimulation and the i.v. bolus administration of exogenous α-CGRP
resulted in frequency-dependent (upper panel) and dose-dependent (lower panel) decreases
in DBP represented as a percentage change in DBP. When comparing the vasodepressor
responses of the control subgroup with those of the subgroup receiving vehicle (bidistilled
water; 0.02 mL/min), no significant differences were found in the responses produced by
sensory electrical stimulation or exogenous α-CGRP (p > 0.05) (Figure 1A,E). Thus, these
vasodepressor responses were reproducible during our experimental protocols.

In contrast, the infusions of 5.6 and 10 µg/kg·min ADPβS produced a significant inhi-
bition (compared to control) of the vasodepressor responses generated by sensory electrical
stimulation at 1.8, 3.1 and 5.6 Hz (Figure 1C,D; p < 0.05), whereas 3 µg/kg·min ADPβS
was inactive (Figure 1B; p > 0.05). However, as shown in Table 2, 5.6 and 10 µg/kg·min
ADPβS produced practically the same degree of inhibition; in other words, this inhibi-
tion was not dose dependent. On this basis, the infusion dose of 5.6 µg/kg·min ADPβS
was selected to investigate (i) its effect on the vasodepressor responses produced by ex-
ogenous α-CGRP; and (ii) the pharmacological profile of the P2Y receptors mediating
ADPβS-induced inhibition of the vasodepressor sensory CGRPergic drive.
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Indeed, Figure 1F indicates that 5.6 µg/kg·min ADPβS failed to inhibit the vasode-
pressor responses to exogenous α-CGRP (contrasting with Figure 1C). With these results,
we suggest that the inhibition by ADPβS of the vasodepressor sensory CGRPergic drive is
prejunctional in nature, but this does not shed further light on the specific pharmacological
profile of the P2Y receptors involved.
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Figure 1. Comparative analysis of the effects produced by infusions of bidistilled water (Bid. Wa-

ter) or ADPβS on the vasodepressor responses produced by electrical stimulation or exogenous

α-CGRP. Effect of i.v. continuous infusions (after 10 min) of (A) bidistilled water (0.02 mL/min; 2),

(B) ADPβS (3 µg/kg·min; ▽), (C) ADPβS (5.6 µg/kg·min; 3) and (D) ADPβS (10 µg/kg·min; △)

on the vasodepressor CGRPergic responses (peak changes) induced by spinal electrical stimulation;

and effect of i.v. continuous infusions (after 10 min) of (E) bidistilled water (0.02 mL/min; 2) and

(F) ADPβS (5.6 µg/kg·min; 3) on the vasodepressor responses (peak changes) induced by i.v. bolus

of exogenous α-calcitonin gene-related peptide (α-CGRP). Data are shown as percentage (%) change

in diastolic blood pressure. Solid symbols indicate a significant difference (p < 0.05) against the

corresponding control response (#). Values are indicated as means ± SEM (n = 6 for each subgroup).
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Table 2. Percentage of the inhibition produced by the infusions (after 10 min) of vehicle (bidistilled

water; 0.02 mL/min) or ADPβS (3, 5.6 and 10 µg/kg·min) on the vasodepressor CGRPergic responses

(peak changes) by electrical sensory stimulation in pithed rats.

Group 0.56 Hz 1.0 Hz 1.8 Hz 3.1 Hz 5.6 Hz

Control −4.0 ± 0.3 −8.5 ± 0.9 −14.0 ± 1.6 −23.8 ± 2.1 −32.6 ± 2.5

Vehicle (0.02 mL/min) −4.9 ± 1.3 −10.7 ± 1.3 −16.7 ± 1.4 −24.4 ± 2.7 −30.4 ± 2.4

ADPβS (3 µg/kg·min) −3.5 ± 0.4 −9.2 ± 1.7 −14.5 ± 1.5 −23.9 ± 2.3 −31.2 ± 2.8

ADPβS (5.6 µg/kg·min) −2.4 ± 0.7 −4.1 ± 0.5 −6.4 ± 0.6 ∆♦� −12.2 ± 0.9 ∆♦� −19.1 ± 1.0 ∆♦�

ADPβS (10 µg/kg·min) −1.1 ± 1.1 −4.1 ± 1.3 −8.2 ± 1.1 ∆♦� −14.3 ± 1.2 ∆♦� −20.4 ± 1.2 ∆♦�

(∆) p < 0.05 versus control; (♦) p < 0.05 versus continuous infusions of bidistilled water; (�) p < 0.05 versus ADPβS
(3 µg/kg·min); values are indicated as means ± SEM (n = 6 for each subgroup).

2.3. Effects of Vehicle, MRS2500, PSB0739 or MRS2211 on the Neurogenic Vasodepressor
CGRPergic Responses by Electrical Stimulation

One fundamental experimental condition that would facilitate the pharmacological
analysis of ADPβS-induced inhibition of the neurogenic vasodepressor sensory CGRPergic
responses is that these responses remain unaffected after the administration of a vehicle
or P2Y receptor antagonists alone. For this purpose, Figure 2 compares the control va-
sodepressor CGRPergic responses by electrical stimulation (without treatment) with those
produced after i.v. treatment with (A) bidistilled water (1 mL/kg; Figure 2A); (B) MRS2500
(300 µg/kg; P2Y1 antagonist, Figure 2B); (C) PSB0739 (300 µg/kg; P2Y12 antagonist,
Figure 2C); (D) MRS2211 (1000 µg/kg; P2Y13 antagonist, Figure 2D); and (E) MRS2211
(3000 µg/kg; P2Y13 antagonist, Figure 2E).
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Figure 2. Comparative analysis of the effect of vehicle (bidistilled water) or P2Y receptor antagonists

on the neurogenic vasodepressor responses produced by spinal (T9–T12) electrical stimulation. Effect

of i.v. bolus injections (after 10 min) of (A) bidistilled water a (1 mL/kg; △), (B) MRS2500 (300 µg/kg;

▽), (C) PSB0739 (300 µg/kg; 3), (D) MRS2211 (1000 µg/kg; 2) or (E) MRS2211 (3000 µg/kg; 2)

on the decreases in DBP (peak changes) produced by electrical stimulation of the vasodepressor

sensory CGRPergic drive during an i.v. continuous infusion (after 10 min) of bidistilled water b

(0.02 mL/min). Empty symbols represent the control responses (#) or non-significant responses

(2, △, ▽, 3) versus the control subgroup (p > 0.05). Values are indicated as means ± SEM (n = 6 for

each subgroup).

Clearly, none of these pharmacological treatments produced a significant change on
the S-R curves (p > 0.05). This means that, under our experimental conditions, these com-
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pounds have no effects on the neurogenic vasodepressor CGRPergic responses produced
by electrical stimulation.

2.4. Effect of Vehicle, MRS2500, PSB0739 or MRS2211 on the ADPβS-Induced Inhibition of the
Neurogenic Vasodepressor CGRPergic Responses by Electrical Stimulation

Figure 3 illustrates the effects of an i.v. bolus injection of vehicle (bidistilled water;
1 mL/kg), MRS2500 (300 µg/kg; P2Y1 antagonist), PSB0739 (300 µg/kg; P2Y12 antago-
nist) or MRS2211 (1000 and 3000 µg/kg; P2Y13 antagonist) on the inhibition by ADPβS
(5.6 µg/kg·min) of the neurogenic vasodepressor responses. The original experimental
tracings of these results (excluding the effects of PSB0739 and MRS2211) are shown in
Figure 4. Clearly, ADPβS-induced inhibition of the vasodepressor sensory CGRPergic
drive remained unaffected after i.v. administration of (i) vehicle (1 mL/kg; p > 0.05 when
comparing the responses shown in Figures 3A and 1C) (see also Figure 4C); (ii) PSB0739
(300 µg/kg; Figure 3C) or MRS2211 (1000 µg/kg; Figure 3D). In contrast, ADPβS-induced
inhibition was reverted after i.v. administration of MRS2500 (300 µg/kg; Figures 3B and 4D)
or MRS2211 (3000 µg/kg; Figure 3E). Interestingly, MRS2500 (300 µg/kg) also abolished
the vasodepressor effect resulting from the infusion of ADPβS (Figure 4D and Table 1).
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Figure 3. Effect of vehicles or P2Y receptor antagonists on the inhibition by ADPβS of the electrically-

stimulated (T9–T12) vasodepressor sensory CGRPergic drive. Neurogenic vasodepressor responses

(peak changes) produced by spinal electrical stimulation of the perivascular sensory CGRPergic

nerves before (control) and following i.v. bolus injections (after 10 min) of (A) bidistilled water a

(1 mL/kg) followed by an i.v. continuous infusion (after 10 min) of bidistilled water b (0.02 mL/min)

or ADPβS (5.6 µg/kg·min); (B) MRS2500 (300 µg/kg), (C) PSB0739 (300 µg/kg), (D) MRS2211

(1000 µg/kg) or (E) MRS2211 (3000 µg/kg) followed by an i.v. continuous infusion (after 10 min) of

ADPβS (5.6 µg/kg·min). Note that the results in panel A obtained from the subgroup receiving i.v.

administration of bidistilled water a (1 mL/kg) + ADPβS (5.6 µg/kg·min) is also the same subgroup

shown in panels B, C, D and E for comparative purposes with the subgroups receiving antagonists.

Empty symbols represent the control responses (#) or nonsignificant responses (2, △, 3) versus

the control responses (p > 0.05). Solid symbols indicate a significant difference (p < 0.05) versus

the control responses (#). * Represents a significant difference (p < 0.05) versus the subgroup that

received i.v. antagonist + ADPβS (5.6 µg/kg·min). Bid. Water stands for bidistilled water. Values are

indicated as means ± SEM (n = 6 for each subgroup).
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Figure 4. Experimental tracings of the vasodepressor responses by electrical stimulation of the

vasodepressor sensory CGRPergic drive under different conditions. S-R curves of the vasodepressor

responses (peak changes) by electrical stimulation of the perivascular sensory CGRPergic nerves in

pithed rats with (A) no treatment (control); (B) i.v. bolus (after 10 min) of bidistilled water followed

by i.v. infusions (after 10 min) of bidistilled water; (C) i.v. bolus (after 10 min) of bidistilled water

followed by an i.v. infusion (after 10 min) of ADPβS (5.6 µg/kg·min); and (D) i.v. administration (after

10 min) of MRS2500 (300 µg/kg) followed by an infusion (after 10 min) of ADPβS (5.6 µg/kg·min).

As shown in panel C, the ADPβS infusion (after 10 min) (i) produced a decrease in DBP (*, 19 ± 3 %;

p < 0.05; Table 1); and (ii) inhibited the electrically-induced vasodepressor CGRPergic responses.

Panel D also shows that these effects of ADPβS were blocked following i.v. administration (after

10 min) of MRS2500 (300 µg/kg). BP stands for blood pressure. Similar results were observed after

each treatment (n = 6 for each subgroup).
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2.5. Effect of VEHICLE or glibenclamide on ADPβS-Induced inhibition of the Vasodepressor
CGRPergic Responses by Electrical Stimulation

Figure 5 compares the control vasodepressor CGRPergic responses by electrical stim-
ulation (without treatment) with those produced after an i.v. bolus injection of vehi-
cle (1 mL/kg) or glibenclamide (20 mg/kg) followed by an i.v. continuous infusion of
(i) bidistilled water (0.02 mL/min); or (ii) ADPβS (5.6 µg/kg·min). The i.v. administration
of vehicle (1 mL/kg) followed by the infusion of bidistilled water (0.02 mL/min) produced
no effect on the electrically-induced vasodepressor responses compared with the control
(p > 0.05; Figure 5A), but the infusion of ADPβS (5.6 µg/kg·min) inhibited the electrically-
induced vasodepressor responses (p < 0.05; Figure 5A). Interestingly, i.v. glibenclamide
(20 mg/kg) followed by the infusion of bidistilled water (0.02 mL/min) significantly atten-
uated the electrically-induced vasodepressor responses (p < 0.05; Figure 5B) and did not
revert ADPβS-induced inhibition (p > 0.05; Figure 5C).
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Figure 5. Comparative analysis of the effect of vehicle or glibenclamide on ADPβS-induced inhibition

of the neurogenic vasodepressor CGRPergic responses. Effect on electrically-stimulated neurogenic

vasodepressor CGRPergic responses (peak changes) of i.v. administration (after 10 min) of (A) a

bolus of glibenclamide vehicle (1 mL/kg) followed by infusions (after 10 min) of bidistilled water

(0.02 mL/min) or ADPβS (5.6 µg/kg·min); (B) an i.v. bolus (after 10 min) of glibenclamide (20 mg/kg)

followed by an infusion (after 10 min) of bidistilled water (0.02 mL/min); and (C) an i.v. bolus (after

10 min) of glibenclamide (20 mg/kg) followed by an infusion (after 10 min) of ADPβS (5.6 µg/kg·min.

Empty symbols represent the control responses (#) or nonsignificant responses (2, △, ▽, 3) versus

the control subgroup (p > 0.05). Solid symbols indicate a significant difference (p < 0.05) against the

control subgroup (#). Values are indicated as means ± SEM (n = 6 for each subgroup).

3. Discussion

3.1. General

The pithed rat is a well-established experimental model for studying cardiovascu-
lar function [4,51] and has been further optimised for investigating the pharmacolog-
ical profile of the receptors that modulate, at the peripheral level, the activity of the
sympathetic and sensory CGRPergic nerve terminals that innervate the cardiovascular
system [23,26–30,36,52–57]. Since central functions are not operative in this model, any
change in blood pressure (and/or heart rate) produced by i.v. administration
of any compound can be attributed exclusively to peripheral (rather than central)
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mechanisms [23,26–30,36,52–57]. On this basis, within the context of the present study,
it is reasonable to assume that the inhibition of the vasodepressor sensory CGRPergic
drive produced by ADPβS is peripheral in nature (i.e., at the level of perivascular sensory
CGRPergic nerves, and unrelated to baroreceptor compensatory reflex mechanisms or
central actions).

Hence, the present study has analysed the pharmacological profile of the purinergic
P2Y receptors modulating the functionality of the CGRPergic neurovascular junction at the
specific level of systemic resistance blood vessels, which are determinant for peripheral
vascular tone and, consequently, for DBP. For this purpose, ADPβS (which is a preferential
agonist at purinergic P2Y1, P2Y12 and P2Y13 receptors [33,36,39,47,58]) was used as it has
recently been shown to produce (when given i.v.) (i) acute vasodepressor responses in
anaesthetized rats [33]; and (ii) cardiac sympatho-inhibition in pithed rats by activation of
purinergic P2Y12 receptors, and less prominently by P2Y13 receptors [36].

Our results show that ADPβS (5.6 µg/kg·min) is capable of producing a prejunctional
inhibition of the vasodepressor sensory CGRPergic drive (implying an inhibition of CGRP
release from perivascular sensory nerves) as it induced (i) inhibition of the vasodepressor
responses produced by electrical stimulation of perivascular sensory CGRPergic nerves
(Figure 1C); and (ii) no effect on the vasodepressor responses produced by exogenous
α-CGRP (Figure 1F).

Moreover, it is to be noted that the electrically induced CGRP release from perivascular
sensory nerves was not directly measured in our experiments but, alternatively, was
determined by the evoked vasodepressor responses, as previously reported [26–30,54,55],
which are specifically blocked by CGRP receptor antagonists [4,57].

3.2. Systemic Haemodynamic Variables

The sustained vasodepressor response produced by 5.6 and 10 µg/kg·min ADPβS
(Table 1) is consistent with other studies reporting that (i) 1 and 10 µM ADPβS induce vas-
cular smooth muscle hyperpolarization by the release of endothelium-derived hyperpolaris-
ing factor [47]; and (ii) 330 µg/kg ADPβS given i.v. in anaesthetised rats produces a biphasic
blood pressure response consisting of an initial short-lasting vasodepressor response fol-
lowed by a vasopressor response that was blocked after i.v. administration of 1000 µg/kg
MRS2211 [33]. Thus, while the primary vasodepressor response to ADPβS (typically pro-
duced by low doses) could be mediated by endothelial P2Y1 receptors [37,38,45–48], the
secondary vasopressor response to 330 µg/kg ADPβS is mediated by P2Y13 receptors [33].

The fact that the vasodepressor response produced by 5.6 µg/kg·min ADPβS was
maintained after i.v. administration of PSB0739 (P2Y12 receptor antagonist) or MRS2211
(P2Y13 receptor antagonist) but was clearly blocked after MRS2500 (P2Y1 receptor antago-
nist) (Table 1), at doses that completely block their respective receptors in pithed rats [36],
reinforces the involvement of P2Y1 receptors in this response. Indeed, P2Y1 receptors, which
are expressed on endothelium and vascular smooth muscle, induce a plasma enhancement
of [Ca++] via Gαq activation (GPCR), and this produces an increase in intracellular NO that
results in vascular smooth muscle relaxation [35,37,38,44,46–48,50,59–62].

On the other hand, since glibenclamide blocked the response to ADPβS (Table 1), it
would seem tempting to suggest the blockade of KATP channels a priori, given that these
channels play a role in adenosine-induced vasodilatation [63]. Despite the fact that the
glibenclamide vehicle also blocked this response (Table 1), we still considered it important to
analyse the effect of glibenclamide on the ADPβS-induced inhibition of the vasodepressor
sensory CGRPergic drive.

3.3. Effect of ADPβS on the Vasodepressor Sensory CGRPergic Drive

As shown in Figure 1 (upper panel), only 5.6 and 10 µg/kg·min ADPβS induced a
significant inhibition of the vasodepressor CGRPergic responses by electrical stimulation at
1.8, 3.1, 5.6 Hz, but the degree of inhibition produced by the two infusions was practically
identical (Table 2), probably producing a maximal (5.6 µg/kg·min) and a supramaximal
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(10 µg/kg·min) inhibition. Consequently, 5.6 µg/kg·min ADPβS was selected for the
subsequent pharmacological analysis with exogenous α-CGRP and P2Y receptor antag-
onists. Hence, the fact that the vasodepressor responses to exogenous α-CGRP were not
significantly modified (p > 0.05) by 5.6 µg/kg·min ADPβS (Figure 1, lower panel) suggests
that ADPβS (i) inhibits the electrically-induced vasodepressor CGRPergic responses by
activating prejunctional receptors; and (ii) does not interact with post-junctional (vascular
musculotropic) receptors that might oppose CGRP-induced vasodilatation, for example, by
activation of P2Y1 receptors producing vasoconstriction [42,50,59].

Evidence for a relationship between nucleotides and modulation of the vasodila-
tor/vasodepressor CGRPergic tone was obtained from enhanced vasodepressor CGRPergic
responses by pre-junctional purinergic receptors. In this regard, Holton (1959) reported
that antidromic stimulation of a rabbit’s skin sensory nerves induced by the release of ATP,
resulted in vasodepressor effects [32]. Subsequently, it was shown that the vasodepressor
response to ATP, which activates heterodimeric purinergic P2X2/3 receptors on prejunc-
tional sensory nerves, induces CGRP release [24,31,59]. Currently, only the interaction of
ATP and adenosine on P2X and A1 receptor families, respectively, of pre-junctional sensory
nerves has been described. Specifically, ATP released from sympathetic noradrenergic
nerves interacts with P2X2/3 receptors on Aδ and C sensory nerves promoting the release
of CGRP [31,32,35,40,49,50,55,58–60,62].

3.4. Inhibition of the Vasodepressor Sensory CGRPergic Drive by ADPβS: Possible
Pharmacological Correlation with the Purinergic P2Y1, P2Y12 and P2Y13 Receptor Subtypes

Once the prejunctional inhibition by ADPβS of the vasodepressor sensory CGRPergic
drive was established (Figure 1), our next step was to analyse the pharmacological profile
of this response. For this purpose (as shown in Table 3), it is important to consider that
(i) ADPβS can activate (and displays affinity for) P2Y1, P2Y12 and P2Y13 receptors [37,39,46,49];
and (ii) some antagonists for these receptors, which include MRS2500 (P2Y1), PSB0739
(P2Y12) and MRS2211 (P2Y13) [49], display specific binding affinities for these receptors.

Table 3. Affinity values of some P2Y ligands for P2Y1, P2Y12 and P2Y13 receptors.

Drugs

Receptors
P2Y1 P2Y12 P2Y13

Agonist ADPβS 5.6 7.5 7.5

Antagonists

MRS2500 9.1 4 a 4 a

PSB0739 6 b 7.6 6 b

MRS2211 5 c 5 c 6.3

Values are presented as pKi/pEC50/pIC50 in human receptors. No effect was observed until a 100 µM; b 1 µM;
c 10 µM. Data taken and modified from [36,37].

It must be emphasised that the doses used of each of these antagonists were (i) based
on their affinities for their respective receptor subtypes (Table 3); and (ii) sufficient to
produce a complete blockade of their respective receptors in pithed rats [36] and in other
experimental models [64–73]. In this respect, our pharmacological experience suggests
that compounds with affinities (pKi values) of 6, 7, 8 and 9 would require in vivo i.v.
doses of approximately 3000, 1000, 300 and 100 µg/kg, respectively, to completely block
their respective receptors. Hence, these lines of reasoning were considered for choosing
the doses of compounds in the present study, namely: (i) 300 µg/kg MRS2500 (P2Y1);
(ii) 300 µg/kg PSB0739 (P2Y12); and (iii) 1000 and 3000 µg/kg MRS2211 (P2Y13).

As a first step of our pharmacological investigation, we decided to explore the possible
effects of each of these antagonists on the neurogenic vasodepressor CGRPergic responses
produced by electrical stimulation. For this reason, they were administered during i.v.
continuous infusions of the ADPβS vehicle (bidistilled water). Since no significant dif-
ferences versus the control subgroup were found, this finding reinforces the view that
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these antagonists have no effects on baseline DBP (Table 1) and on the neurogenic vasode-
pressor CGRPergic responses (Figure 2). On the basis of their affinities shown in Table 3,
their profile of blockade of cardiovascular responses in pithed rats [36], and the dosage
considerations described above, the fact that the ADPβS-induced sensory inhibition was
only reversed by i.v. MRS2500 (300 µg/kg) or MRS2211 (3000 µg/kg), but not by PSB0739
(300 µg/kg) or MRS2211 (1000 µg/kg) (Figure 3) suggests the main involvement of P2Y1,
and probably P2Y13, but not P2Y12, receptors.

Clearly, the binding profile of MRS2211 as an antagonist for P2Y13 receptors (Table 3)
is far from ideal and, certainly, does not guarantee selectivity in pithed rats. Thus,
it could be argued that 3000 µg/kg MRS2211 reverted the inhibition by ADPβS be-
cause this high dose is capable of blocking P2Y1, P2Y12 and P2Y13 receptors, as reported
earlier [64–73]. However, in our experiments (i) the doses used of MRS2500 and PSB0739 are
high enough to selectively (Table 3) and completely block cardiovascular responses medi-
ated by P2Y1 and P2Y12 receptors, respectively, in pithed rats [36]; and (ii) the inhibition by
ADPβS was reverted by MRS2500 (300 µg/kg; Figure 3B), but not by PSB0739 (300 µg/kg;
Figure 3C). Thus, the possibility exists that 3000 µg/kg MRS2211 could be blocking P2Y1

receptors. Notwithstanding, as shown in Table 1, the vasodepressor response resulting from
5.6 µg/kg·min ADPβS, which was abolished by MRS2500 as a typical response mediated by
endothelial P2Y1 receptors [38,39,43,45,46,50], remained unaffected by MRS2211 (Table 1),
as previously described by Haanes et al. [33]. Certainly, with the present results (Figure 3)
we cannot exclude the possibility that in perivascular sensory CGRPergic nerves (i) the role
of P2Y13 receptors is less prominent than that of P2Y1 receptors; and (ii) both P2Y1 and
P2Y13 receptors are blocked by 3000 µg/kg MRS2211, but not by 1000 µg/kg MRS2211.
Moreover, the vasodepressor response produced by 5.6 µg/kg·min ADPβS (mediated
by endothelial P2Y1 receptors blocked by MRS2500; Table 1) might involve activation of
endothelial NO synthase and promote vascular smooth muscle relaxation via activation of
KATP channels by a cytosolic increase in Ca++ concentrations [38,39,43,45,46,50].

Our findings, suggesting the possible involvement of prejunctional P2Y13 receptors
inhibiting CGRP release from perivascular sensory nerves (Figure 3E), are consistent with
other studies reporting that ADPβS inhibits (i) CGRP release from rat sensory neurons
in dural arteries and trigeminal ganglion by MRS2211-sensitive P2Y13 receptors [33]; and
(ii) noradrenaline release from cardioaccelerator sympathetic nerves in pithed rats by
activation of purinergic P2Y12 receptors and less prominently by P2Y13 receptors [36].

Regarding the possible transduction mechanisms of P2Y13 receptors associated with in-
hibition of neuronal CGRP release, some in vitro studies indicate that P2Y13 receptors have
several transduction pathways [74–76] including, amongst others: (i) Gi/o protein activation
with ADP, leading to inhibition of adenylate cyclase with a resulting decrease in cAMP pro-
duction; (ii) phosphorylation of the PI3K/Akt/GSK3 axis that produces release of β-catenin
and Nrf2 (transcription factors) promoting cell survival; and (iii) Gαq coupling, with a
resulting increase in [Ca++] and activation of phospholipase C/PKC/ERK/CREB7DUSP2.
Moreover, the βγ subunits can activate RhoA with a resulting decrease in Ca++ channel
activity that modulates neurotransmitter release [74].

Our findings supporting the role of prejunctional P2Y1, and probably P2Y13, receptors
in the inhibition of CGRP release from perivascular sensory nerves may complement the
general concept of purinergic modulation of CGRP release in sensory neurons. With this
concept in mind, activation of sympathetic postganglionic neurons results in the release of
noradrenaline and ATP as a cotransmitter; in turn, ATP would activate P2X2/3 receptors
(ATP-gated Na+, K+ and Ca++ channels [59,77]) on sensory nerves with an increase in
CGRP release [24]. Subsequently, ATP at the neuroeffector junction would be hydrolysed
to ADP by ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase 2,3,8) [78];
then ADP could stimulate P2Y1 and P2Y13 receptors on sensory neurons (as suggested in
the present study) with a decrease in CGRP release.



Pharmaceuticals 2023, 16, 475 12 of 22

3.5. Are KATP Channels Involved in the Inhibition of the Vasodepressor CGRPergic Drive
by ADPβS?

KATP channels are expressed in vascular smooth muscle and modulate vascular tone,
blood flow and blood pressure; when opened, they produce membrane hyperpolarization
of vascular smooth muscle, relaxation and vasodilation [79–82]. Hence, glibenclamide (a
KATP channel blocker) was used to pharmacologically discern the possible role of KATP chan-
nels in the CGRPergic sensory inhibition produced by ADPβS (Figure 5). However, under
our experimental conditions, glibenclamide, which had no effect on DBP (Table 1), attenu-
ated the vasodepressor sensory CGRPergic drive (Figure 5B), as previously reported [53].
Certainly, this effect could have overshadowed the ADPβS-induced sensory inhibition and
would help explain why glibenclamide failed to revert ADPβS-induced inhibition of the
vasodepressor sensory CGRPergic drive (compare Figure 5C with Figure 5A).

This inactivity of glibenclamide, notwithstanding, does not seem to be a compelling
finding to rule out the role of KATP channels in ADPβS-induced prejunctional sensory-
inhibition because we hypothesise that two fundamental mechanisms are operative in our
experimental model, namely: (i) ADPβS-induced hyperpolarization of CGRPergic sensory
nerves; and (ii) CGRP-induced systemic vasodilatation.

Within this context, on the one hand, the hyperpolarization of vascular smooth muscle
cells resulting from activation by ADPβS of endothelial P2Y1 receptors [38,41–45,50,63]
would produce activation of phospholipase C and, consecutively, an increase in cytoplasmic
Ca++ concentrations, eNOS activity and release of NO which, in turn, would increase
guanylate cyclase activity, phosphorylation of KATP channels, and K+ conductance leading
to the relaxation of vascular smooth muscle [38,41–45,50,63].

On the other hand, the CGRP-induced systemic vasodilatation (via the activation of
Gαs protein-coupled CGRP receptors) is mediated by two pathways: (i) direct smooth mus-
cle vasorelaxation involving activation of adenylate cyclase and, consecutively, an increase
in cAMP levels, PKA activity and phosphorylation of KATP channels; and (ii) endothelial va-
sorelaxation resulting from a sequential increase in PKA activity, NO production diffusing
to vascular smooth muscle, guanylate cyclase activity, cGMP levels, and phosphorylation of
KATP channels leading to vasodilation [10,13,14,18]. We would, finally, like to put forward
(with no direct experimental evidence) that these transduction mechanisms activated by
ADPβS at vascular level might also occur in perivascular sensory CGRPergic nerves.

3.6. Limitations of the Study

Based on the above, and considering the neurovascular junction, it is clear that gliben-
clamide may have blocked KATP channels at both prejunctional (perivascular sensory
nerves) and postjunctional (vascular) levels and that, as a result, may have inhibited the
actions of ADPβS and CGRP, respectively. For this reason, it was not possible to discern, un-
der our experimental conditions, the actions of glibenclamide (blocking KATP channels) at
prejunctional and postjunctional levels. These experimental limitations may be approached
in other studies with additional technologies involving, among others, molecular biology
and immunohistochemistry.

On the other hand, we have to recognize that (i) the comparison of affinities of ag-
onists and antagonists at P2Y1, P2Y12 and P2Y13 receptors, shown in Table 3, consists of
data obtained from human P2Y receptors; and (ii) as far as we know, this binding data
comparison does not exist for rodents. Nevertheless, these binding data may be trans-
ferrable from humans to rodents for several reasons: (i) for ADPβS, the affinity is the
same for human and rat P2Y12 receptors [65,83], but there are only limited differences
between rat and human P2Y13 receptors [64]; (ii) for ADP, only comparable affinities exist
for P2Y1 and P2Y13 receptors, which is equipotent on human and rat P2Y1 receptors [66,84],
but it seems slightly more potent on human than on rat P2Y13 receptors [85]. The main
finding of the present study is the blockade produced by MRS2500 on P2Y1 receptors
(Figures 3B and 4D), which displays a comparable affinity for human and rat P2Y1 re-
ceptors [86]. To our knowledge, rat binding data do not exist for both PSB0739 and
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MRS2211; however, for Ticagrelor (an FDA approved P2Y12 receptor antagonist), there was
no difference in affinity for rodent and human P2Y12 receptors [87], suggesting a similar
pharmacology.

3.7. Perspectives and Potential Clinical Significance

Purinergic P2Y receptors play an important role in numerous cardiovascular diseases
including endothelial dysfunction, which is characterized by vasoconstriction, increased
vascular permeability and a prothrombotic and proinflammatory state [44,46]. On the other
hand, it has been suggested that CGRP is involved in cardiovascular pathologies such as
hypertension [12,15,17,20,88] or neurovascular disorders such as migraines [6,33,89].

Based on the inactivity of PSB0739 (300 µg/kg; Figure 3C) to revert ADPβS-induced
sensory inhibition, our results imply that, in healthy animals, there is no physiological rele-
vance of purinergic P2Y12 receptors modulating CGRP release from perivascular sensory
nerves. In keeping with this view, P2Y12 receptors are highly expressed on platelets and
megakaryocytes, exerting a prothrombotic function. Nevertheless, in pathological condi-
tions such as hypoxia, heart failure, hypertension, sepsis, atherosclerosis, tissue damage
and inflammation (among others) P2Y12/13 receptors become relevant, generating (at an
endothelial level) increased permeability, thrombosis and angiogenesis [46]. Significantly,
the effectivity of the P2Y1 receptor antagonist MRS2500 (300 µg/kg; Figures 3B and 4D)
to revert ADPβS-induced inhibition strongly suggests that purinergic P2Y1 receptors may
play a role in modulating the release of CGRP at a prejunctional level, in addition to their
vasodilator effects. This would strengthen the role of P2Y1 receptors in vascular diseases
such as hypertension and migraines.

4. Materials and Methods

4.1. Ethical Approval of the Study Protocol in Pithed Rats

As previously reported [26–30,36,54–57], “the experimental protocols of the present
investigation were approved by our Institutional Ethics Committee on the use of animals
on scientific experiments (CICUAL-Cinvestav; protocol number 0139-15), following the reg-
ulations stablished by the Mexican Official Norm (NOM-062-ZOO-1999) [90] in accordance
with the guide for the Care and Use of Laboratory Animals in the USA [91], the ARRIVE
guidelines for reporting experiments in animals [92] and the Legislation for the Protection
of Animals Used for Scientific Purposes (Directive 2010/63/EU(2010)”.

4.2. General Methods

A total of 132 male normotensive Wistar rats (380–420 g, 18–22 weeks of age) were used
in the present investigation. The animals were maintained at 22 ± 2 ◦C room temperature,
50% humidity and a 12/12-h light/dark cycle (light beginning at 07:00 h) with food and
water freely available in their home cages.

Following the methods described for stimulation of the vasodepressor sensory
CGRPergic drive in pithed rats [26–30,54,55,57], “the rats were anaesthetized with sodium
pentobarbital (60 mg/kg, i.p.); then, the animals were: (i) cannulated into the trachea
and pithed by inserting a stainless steel rod through the ocular orbit and the foramen
magnum into the vertebral foramen; and (ii) artificially ventilated with room air by using
an Ugo Basile pump (56 strokes/min, stroke volume of 20 mL/kg; Ugo Basile Srl, Comerio,
VA, Italy).

After bilateral cervical vagotomy, the rats were cannulated with polyethylene catheters
which were placed in: (i) the left and right femoral veins for the continuous infusions
of methoxamine and ADPβS (or vehicle), respectively; (ii) the left jugular vein for the
continuous infusion of hexamethonium; and (iii) the right jugular vein, for the bolus
injections of gallamine or the P2Y receptor antagonists (of vehicles). Subsequently, the left
carotid artery was connected to a Grass pressure transducer (P23 XL), for the recording of
blood pressure. Both, heart rate (measured with a 7P4F tachograph) and blood pressure
were recorded simultaneously by a model 7D Grass polygraph (Grass Instrument Co.,
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Quincy, MA, USA). The body temperature of each pithed rat (monitored with a rectal
thermometer) was maintained at 37 ◦C by a lamp”.

4.3. Experimental Protocols

Once the 132 pithed rats had been in a stable haemodynamic condition for at least
30 min, they were divided into two main sets for eliciting vasodepressor responses induced
by (i) selective spinal (T9–T12) electrical stimulation of the vasodepressor sensory CGRPer-
gic drive (set 1; n = 114), which represents the perivascular sensory CGRPergic nerves that
innervate the systemic resistance blood vessels [26–30,54,55,57]; and (ii) i.v. bolus injections
of exogenous α-CGRP (set 2; n = 18). The resulting vasodepressor stimulus-response curves
(S-R curves; elicited by electrical stimulation) and dose-response curves (D-R curves; elicited
by exogenous CGRP) were completed in about 50 min, with each electrical stimulus/dose
given every 5–10 min, as established in previous studies [26–30,54,55,57]. As depicted in
Figure 6, these 2 sets (corresponding to Protocols I and II; see below), in turn, were divided
into different pre-treatment groups and, subsequently, into different subgroups (n = 6 each;
see below). Then, the following experimental protocols followed.

4.3.1. Protocol I: Selective Electrical Stimulation of the Vasodepressor Sensory
CGRPergic Drive

In the first set (n = 114), “the stainless-steel rod was replaced by an enamelled electrode
whose uncovered segment was located at T9–T12 of the spinal cord to allow selective stimula-
tion of the vasodepressor sensory CGRPergic drive”, as previously reported [26–30,54,55,57].
Before electrical stimulation, the animals were pre-treated with gallamine (25 mg/kg, i.v.),
a nondepolarizing neuromuscular blocking agent, to avoid the electrically induced mus-
cular twitching [25,36,56]. In order to obtain vasodepressor responses, “DBP was initially
increased and maintained at around 100–120 mm Hg by an i.v. continuous infusion of
methoxamine (15–20 µg/kg·min) during and until the end of the experiments”, as previ-
ously established by our group [26–30,54,55,57]. Then, the animals received i.v. continuous
infusions of hexamethonium (2 mg/kg·min), a nicotinic ganglion blocker, to block the
sympathetic vasopressor responses generated by electrical stimulation of the spinal T9

segment [4,25,56,57]. When haemodynamic conditions were stable, baseline values of
heart rate and DBP (a more accurate indicator of peripheral vascular resistance) were
determined [36], and the 114 animals were then divided into six groups (n = 18, 24, 12,
12, 24, 24, respectively) for spinal T9–T12 electrical stimulation (see Figure 6). It must be
emphasised that, prior to electrical spinal stimulation (and also prior to i.v. bolus injections
of exogenous α-CGRP) to produce vasodepressor responses (depending on the specific
protocol for each subgroup; see below), 10 min were allowed to elapse after each i.v. bolus
injection of compound and after each i.v. continuous infusion of compound.

Spinal T9–T12 electrical stimulation consisted of applying trains of 10 s to selectively
stimulate the vasodepressor sensory CGRPergic drive (monophasic rectangular pulses of
2 ms and 50 V) at increasing frequencies (0.56, 1.0, 1.8, 3.1 and 5.6 Hz). When DBP had
returned to baseline levels, the next frequency was applied (at intervals of about 5–10 min)
until the S-R curve was completed (around 50 min).

The first group (n =18) was subdivided into three subgroups (n = 6 each) that received
(i) no pharmacological treatment (control subgroup); (ii) an i.v. continuous infusion of bidis-
tilled water (0.02 mL/min); and (iii) an i.v. bolus injection of bidistilled water (1 mL/kg)
followed by an i.v. continuous infusion of bidistilled water (0.02 mL/min).

The second group (n = 24) was subdivided into four subgroups (n = 6 each) to deter-
mine the effect of increasing infusion doses of ADPβS, namely: (i) ADPβS (3 µg/kg·min);
(ii) ADPβS (5.6 µg/kg·min); (iii) ADβS (10 µg/kg·min); and (iv) an i.v. bolus of bidistilled
water (1 mL/kg) followed by ADPβS (5.6 µg/kg·min).
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Figure 6. Experimental Design. Experimental protocols showing the number of pithed rats used in the two main sets and their subsequent division into different

groups and subgroups.
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The third group (n = 12) was subdivided into two subgroups (n = 6 each) to evaluate
the effect of an i.v. bolus injection of the P2Y1 receptor antagonist: (i) MRS2500 (300 µg/kg)
followed by an i.v. continuous infusion of bidistilled water (0.02 mL/min); and (ii) MRS2500
(300 µg/kg) followed by an i.v. continuous infusion of ADPβS (5.6 µg/kg·min).

The fourth group (n = 12) was subdivided into two subgroups (n = 6 each) to investigate
the effect of an i.v. bolus injection of the P2Y12 receptor antagonist: (i) PSB0739 (300 µg/kg)
followed by an i.v. continuous infusion of bidistilled water (0.02 mL/min); and (ii) PSB0739
(300 µg/kg) followed by an i.v. continuous infusion of ADPβS (5.6 µg/kg·min).

The fifth group (n = 24) was subdivided into four subgroups (n = 6 each) to anal-
yse the effect of an i.v. bolus injection of the P2Y13 receptor antagonist: (i) MRS2211
(1000 µg/kg) followed by an i.v. continuous infusion of bidistilled water (0.02 mL/min);
(ii) MRS2211 (1000 µg/kg) followed by an i.v. continuous infusion of ADPβS. (5.6 µg/kg·min);
(iii) MRS2211 (3000 µg/kg) followed by an i.v. continuous infusion of bidistilled water
(0.02 mL/min); and (iv) MRS2211 (3000 µg/kg) followed by an i.v. continuous an i.v.
infusion of ADPβS (5.6 µg/kg·min).

The sixth group (n = 24) was divided into four subgroups (n = 6) to explore the
role of KATP channels. For this purpose, these subgroups received, individually, an i.v.
bolus of (i) vehicle (1 mL/kg) followed by an i.v. continuous infusion of bidistilled water
(0.02 mL/min); (ii) vehicle (1 mL/kg) followed by an i.v. continuous infusion of ADPβS
(5.6 µg/kg·min); (iii) glibenclamide (20 mg/kg) followed by an i.v. continuous infusions
of bidistilled water (0.02 mL/min); and (iv) glibenclamide (20 mg/kg) followed by an i.v.
continuous infusion of ADPβS (5.6 µg/kg·min).

The doses of the above antagonists/blockers have been shown to abolish the responses
mediated by their corresponding receptors/mechanisms in pithed rats [36,53].

4.3.2. Protocol II: Intravenous Bolus Injections of Exogenous α-CGRP

The second set of pithed rats (n = 18) was prepared as described above, but the
pithing rod was left throughout the experiment, and the administration of both gallamine
and hexamethonium was omitted, as previously established [26–30,54,55,57]. Once the
animals maintained a stable haemodynamic condition for 30 min, baseline DBP values
were determined, and the animals were divided into three subgroups (n = 6 each) that
were given (i) no pharmacological treatment (control subgroup); (ii) an i.v. continuous
infusion of bidistilled water (0.02 mL/min); and (iii) an i.v. continuous infusion of ADPβS
(5.6 µg/kg·min).

“Ten min later, these subgroups received consecutive i.v. bolus injections of exogenous
α-CGRP at increasing doses (0.1, 0.18, 0.31, 0.56, and 1 µg/kg) to produce dose-dependent
vasodepressor responses. When DBP returned to baseline levels, the next dose was applied
(about 5 min) until the D-R curve was completed (approximately 30 min)”, as reported
earlier [26–30,54,55,57].

4.4. Supplementary Procedures

It is to be noted that the doses of (i) vehicle (bidistilled water) or ADPβS were con-
tinuously infused (i.v.) at a rate of 0.02 mL/min by a KDS100 model infusion pump (KD
Scientific Inc., Holliston, MA, USA); and (ii) vehicles or antagonists were given as i.v. bolus
injections in volumes of 1 mL/kg.

The intervals between the different stimulation frequencies or α-CGRP doses de-
pended on the duration of the vasodepressor responses (5 min), as we waited until DBP
had returned to baseline values.

Moreover, since the CGRPergic vasodepressor responses (produced by electrical stim-
ulation or exogenous α-CGRP) are highly tachyphylactic [4,26–30,54,55,57] (unlike the
vasopressor responses by sympathetic stimulation or exogenous noradrenaline [25,56]), we
decided not to perform more than one S-R or D-R curve (Figure 6).
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4.5. Compounds

During the development of these experimental protocols, the compounds employed
in the present study (obtained from the sources indicated) were sodium pentobarbi-
tal (PISA Agropecuaria, Mexico City, Mexico); gallamine triethiodide, hexamethonium
chloride, glibenclamide, rat α-CGRP, methoxamine hydrochloride and adenosine-5′-[β-
thio]diphosphate trilithium salt (ADPβS) (Sigma Chemical Co., St. Louis, MO, USA);
(1R*,2S*)-4-[2-Iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy) bicyclo [3.1.0]
hexane-1-methanol dihydrogen phosphate ester tetra ammonium salt (MRS2500); 1-amino-
9,10-dihydro-9,10-dioxo-4-[[4-(phenylamino)-3-sulfophenyl]amino]-2-anthracenesulfonic
acid sodium salt (PSB0739) and 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-
[(phosphonooxy)methyl]–4-pyridinecarboxaldehyde disodium salt (MRS2211) (TOCRIS,
Avonmouth, Bristol, UK).

As previously reported (i) “gallamine, hexamethonium, α-CGRP and methoxamine
were dissolved in physiological saline” [26–30,54,55,57]; (ii) “ADPβS, MRS2500, PSB0739
and MRRS2211 were dissolved in bidistilled water” [36]; and (iii) “glibenclamide was
dissolved in a vehicle combination of 33% PEG, 33% ethanol and 34% NaOH 0.2 M” [53].
None of these vehicles affected the baseline values of DBP or heart rate (not shown).

4.6. Data Presentation and Statistical Evaluation

“All data in the text and figures are presented as the mean ± SEM. The peak changes
in DBP by electrical stimulation or exogenous α-CGRP were expressed as the percent
change from baseline”, as previously described in pithed rats [26–30,54,55,57]. “A one-way
ANOVA was used to compare the absolute values of DBP obtained during the continuous
infusions of methoxamine, before and 10 min after the administration of all compounds
before starting the electrical stimulation.

Moreover, the decreases in DBP induced electrically or by exogenous α-CGRP in
the different subgroups of animals were evaluated with the Student-Newman-Keuls
post hoc test, once a two-way repeated measures ANOVA (randomized block design)
showed that the samples represented different populations [93]”, as reported in previous
studies [26–30,54,55,57]. Statistical significance was accepted at p < 0.05. Statistical analysis
was performed using SigmaPlot 12.0 (Systat Software, Inc. SigmaPlot for Windows).

The graphics were performed using Prism 6 software (GraphPad Software, Inc., San
Diego, CA, USA).

5. Conclusions

Our results, taken together, allow us to suggest that the inhibition of vasodepressor
sensory CGRPergic outflow produced by 5.6 mg/kg·min of ADPβS in healthy pithed rats
(i) is apparently unrelated to activation of ATP-sensitive K+ channels; and (ii) could be
mediated by activation of prejunctional P2Y1 and probably P2Y13, but not P2Y12, receptors.
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Abbreviations

ADP Adenosine diphosphate

ADPβS Adenosine 5′-O-2-thiodiphosphate

ATP Adenosine triphosphate

cAMP Cyclic adenosine monophosphate

cGMP Cyclic guanosine monophosphate

CGRP Calcitonin gene-related peptide

CGRPR Calcitonin gene-related peptide receptor

CLR Calcitonin-like receptor

DBP Diastolic blood pressure

D-R curves Dose-response curves

Ecto-NTPDase 2,3,8 Ecto-nucleoside triphosphate diphosphohydrolase

eNOS Endothelial nitric oxide synthase

GPCR G protein-coupled receptor

NO Nitric oxide

PKA Protein kinase A

RAMP1 Receptor activity modifying protein

S-R curves Stimulus-response curves
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