74 research outputs found

    Gluon confinement criterion in QCD

    Get PDF
    We fix exactly and uniquely the infrared structure of the full gluon propagator in QCD, not solving explicitly the corresponding dynamical equation of motion. By construction, this structure is an infinite sum over all possible severe (i.e., more singular than 1/q21/q^2) infrared singularities. It reflects the zero momentum modes enhancement effect in the true QCD vacuum, which is due to the self-interaction of massless gluons. It existence automatically exhibits a characteristic mass (the so-called mass gap). It is responsible for the scale of nonperturbative dynamics in the true QCD ground state. The theory of distributions, complemented by the dimensional regularization method, allows one to put the severe infrared singularities under the firm mathematical control. By an infrared renormalization of a mass gap only, the infrared structure of the full gluon propagator is exactly reduced to the simplest severe infrared singularity, the famous (q2)2(q^2)^{-2}. Thus we have exactly established the interaction between quarks (concerning its pure gluon (i.e., nonlinear) contribution) up to its unimportant perturbative part. This also makes it possible for the first time to formulate the gluon confinement criterion and intrinsically nonperturbative phase in QCD in a manifestly gauge-invariant ways.Comment: 10 pages, no figures, no tables. Typos corrected and the clarification is intoduced. Shorten version to appear in Phys. Lett.

    Multiple-Peptidase Mutants of Lactococcus lactis Are Severely Impaired in Their Ability To Grow in Milk

    Get PDF
    To examine the contribution of peptidases to the growth of Lactococcus lactis in milk, 16 single- and multiple-deletion mutants were constructed. In successive rounds of chromosomal gene replacement mutagenesis, up to all five of the following peptidase genes were inactivated (fivefold mutant): pepX, pepO, pepT, pepC, and pepN. Multiple mutations led to slower growth rates in milk, the general trend being that growth rates decreased when more peptidases were inactivated. The fivefold mutant grew more than 10 times more slowly in milk than the wild-type strain. In one of the fourfold mutants and in the fivefold mutant, the intracellular pools of amino acids were lower than those of the wild type, whereas peptides had accumulated inside the cell. No significant differences in the activities of the cell envelope-associated proteinase and of the oligopeptide transport system were observed. Also, the expression of the peptidases still present in the various mutants was not detectably affected. Thus, the lower growth rates can directly be attributed to the inability of the mutants to degrade casein-derived peptides. These results supply the first direct evidence for the functioning of lactococcal peptidases in the degradation of milk proteins. Furthermore, the study provides critical information about the relative importance of the peptidases for growth in milk, the order of events in the proteolytic pathway, and the regulation of its individual components.

    Goat Milk Based Infant Formula in Newborns:A Double-Blind Randomized Controlled Trial on Growth and Safety.

    Get PDF
    Objectives: We aimed to determine the growth and safety parameters in newborns fed a goat milk based infant formula (GMF) using a randomized double-blind trial, in which a cow milk formula (CMF) served as a control and a breast fed (BF) group as a reference. Methods: Healthy term infants (n = 218) aged up to 14 days were recruited from 25 European study centers and randomized to GMF or CMF. Weight, length, head circumference were measured at baseline, and at 14, 28, 56, 84, and 112 days at the study clinics. Adverse events were recorded and stool characteristics, reflux, fussiness, colic, and flatulence were self-reported by parents in 3-day diaries. Anthropometric measurements were transformed to WHO standardized age- and sex-adjusted z-scores. Analyses of covariance and linear mixed modeling were used to statistically analyze growth, while adjusting for potential confounders when studying the breast-fed group (n = 86). Results: Comparing the GMF to the CMF group, weight gain [mean difference 227.8 g (95% CI -16.6 to -439.0)] and z-scores for anthropometric measurements were similar after 112 days intervention. Infant formula groups showed greater mean (SD) weight z-scores than the BF group from 84 days onwards (GMF: 0.28 (0.84), CMF: 0.12 (0.88), BF -0.19 (1.02), P < 0.05), whereas length and head circumference z-scores were similar. Incidences of serious adverse events and reflux, fussiness, colic, and flatulence were similar among the three groups. Conclusion: Our data demonstrate that GMF provides adequate growth, has a good tolerability, and is safe to use in infants

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    PpiA, a Surface PPIase of the Cyclophilin Family in Lactococcus lactis

    Get PDF
    Background: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displaye

    Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    Get PDF
    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.
    corecore