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Abstract

We fix exactly and uniquely the infrared structure of the full gluon propagator in QCD, not solving explicitly the
corresponding dynamical equation of motion. By construction, this structure is an infinite sum over all possible severe (i.e.,
more singular than /lyz) infrared singularities. It reflects the zero momentum modes enhancement effect in the true QCD
vacuum, which is due to the self-interaction of massless gluons. Its existence automatically exhibits a characteristic mass (the
so-called mass gap). It is responsible for the scale of nonperturbative dynamics in the true QCD ground state. The theory of
distributions, complemented by the dimensional regularization method, allows one to put severe infrared singularities under firm
mathematical control. By an infrared renormalization of a mass gap only, the infrared structure of the full gluon propagator is
exactly reduced to the simplest severe infrared singularity, the fa@8us2. Thus we have exactly established the interaction
between quarks (concerning its pure gluon (i.e., nonlinear) contribution) up to its unimportant perturbative part. This also makes
it possible for the first time to formulate the gluon confinement criterion and intrinsically nonperturbative phase in QCD in a
manifestly gauge-invariant ways.
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1. Introduction gluon propagator, is (using Euclidean signature here
and everywhere below)

To say today that QCD is a nonperturbative (NP) 1
theory is almost a tautology. The problem is how Duv(@) =i{Tuw(@)d(¢% &) +ELw (@)} =,  (1.1)
to define it exactly, since we know for sure that a
QCD has a perturbative (PT) phase as well becausewheres is the gauge fixing parametey £ 0—Landau
of asymptotic freedom (AF) [1]. In order to define gaugef = 1—Feynman gauge) ari),,(¢) = guv —
exactly the NP phase in QCD, let us start with one (¢.9v/4%) = guv — Luv(q). Evidently, T,,, (¢) is the
of the main objects in the Yang—Mills (YM) sector. transverse (physical) component of the full gluon
The two-point Green’s function, describing the full propagator, while.,,(¢) is its longitudinal (unphys-
ical) one. The free gluon propagator is obtained by
simply setting the full gluon form factaf(¢2, £) =1
E-mail addressgogohia@rmki.kfki.hu (V. Gogohia). in Eq. (1.1). The dynamical equation of motion for

0370-26931 2004 Elsevier B.VOpen access under CC BY license.
doi:10.1016/j.physletb.2004.01.032


https://core.ac.uk/display/82747602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

226

the full gluon propagator (1.1) is the so-called gluon
Schwinger-Dyson (SD) equation, which is part of
the whole SD system of dynamical equations of mo-
tion [1]. The solutions of the gluon SD equation are
supposed to reflect the complexity of the quantum
structure of the true QCD ground state. Precisely this
determines one of the central roles of the full gluon
propagator in the SD system of equations. The SD
equation for the full gluon propagator is a highly non-
linear system of four-dimensional integrals, contain-
ing many different, unknown in general, propagators
and vertices, which, in their turn, satisfy too compli-
cated integral equations, containing different scatter-
ing amplitudes and kernels, so there is no hope for
exact solution(s). However, in any case the solutions
of this equation can be distinguished from each other
by their behavior in the infrared (IR) limit, describing
thus many (several) different types of quantum excita-
tions and fluctuations of gluon field configurations in
the QCD vacuum. The ultraviolet (UV) limit of these
solutions is uniquely fixed by AF.

The IR asymptotics of the full gluon propagator
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singularities is to be accounted for. The free gluon
propagator (see Eq. (1.1) with(¢?) = 1) has an exact
power-type 1/4 IR singularity. So the IR singularities
as much singular as/4? as 2 — 0 will be called

PT IR singularities. The IR singularities which are
more severe than the above-mentioned exact power-
type IR singularity of the free gluon propagator will be
called NP IR singularities, i.e., they are more severe
than 1/¢2 as g2 — 0. They should be summarized
(accumulated) into the full gluon propagator and
described effectively correctly by its structure in the
deep IR domain. Let us remind that for a long time
from the very beginning of QCD it has been already
well known that the QCD vacuum is really beset
with severe (or equivalently NP) IR singularities if
standard PT is applied [1,5-12]. “But it is to just
this violent IR behavior that we must look for the
key to the low energy and large distance hadron
phenomena. In particular, the absence of quarks and
other colored objects can only be understood in terms
of the IR divergences in the self-energy of a color
bearing objects” [10]. It is worth emphasizing that

can be either singular or smooth. However, the smooth in Ref. [13] it is explicity shown how severe IR

behavior of the full gluon propagator (1.1) is possible

singularities inevitably appear in the vacuum of QCD,

only in one exceptional covariant gauge—the Landau providing thus the basis for the zero momentum
gauge £ =0) [2], i.e., it is a gauge artifact solution modes enhancement (ZMME) effect there. So it is
in this case. Being thus a gauge artifact, it can be intrinsically peculiar to the true QCD ground state due
related to none of the physical phenomena such asto the self-interaction of massless gluons. Precisely
guark and gluon confinement or dynamical breakdown this effect is reflected by the appearance of severe IR

of chiral symmetry (DBCS), which are, by definition,
manifestly gauge-invariant. To our best knowledge,

singularities in the gluon propagator.
It is clear also that any deviation of the full gluon

beyond the covariant gauges, other than the Landaupropagator from the free one in the IR, automatically

gauge, the smooth behavior is not known. Anyway,
nobody knows how to relate the smooth asymptotics
in any covariant gauge to color confinement, DBCS,
etc. For example, it does not provide a linearly rising
potential between heavy quarks “seen” by lattice QCD

requires an introduction of the corresponding mass
scale parameter, responsible for the nontrivial dynam-
ics in the IR region, the so-called mass gap (see be-
low). This is important, since there is none explicitly

present in the QCD Lagrangian (current quark mass

simulations [3]. Hence we will not discuss it in what

follows, though a solution with smooth asymptotics

may exist as a formal one to the gluon SD equation.
Thus we are left with the IR singular behavior

cannot be considered as a mass gap, since it is not
the renormalization group invariant). Of course, such
gluon field configurations, which are to be described
by the severely IR structure of the full gluon propa-
of the full gluon propagator only, which is possible gator, can be only of dynamical origin. The only dy-
in any gauge (in principle, the free gluon propagator namical mechanism in QCD which can produce such
can be also used in any gauge. The Feynman gaugeconfigurations in the vacuum, is the self-interaction of
free gluon propagator in the IR has been used by massless gluonsin the deep IR domain. So the above-
Gribov [4] in order to investigate quark confinement mentioned mass gap appears on dynamical ground.
within precisely the SD system of equation approach). Let us remind that precisely this self-interaction in the
The only problem is to decide which type of the IR UV limit leads to AF.
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The main purpose of this Letter is to establish ex-
actly the deep IR structure of the full gluon propagator,
not solving the gluon SD equation directly, which is a
formidable task, anyway. On this basis we will be able
to derive the gluon confinement criterion in a mani-
festly gauge-invariant way.

2. Thegeneral structure of the full gluon
propagator

For the above-mentioned purpose, namely, how to
define the NP phase in QCD, it is convenient to begin
with the exact decomposition of the full gluon form
factor in Eqg. (1.1) as follows:

d(qz) zd(qZ) _dPT(qZ) +dPT(q2)
szP(qZ) _I_dPT(qZ),

where, for simplicity, the dependence on the gauge fix-
ing parameter is omitted. In fact, this formal equation

(2.1)
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where

2= i Ty (9)d"™"(q2).

(2.3)

and DT(q) = i{Tuw(@)d"T(q®) + £L ()} (1/q).
Here the superscript “INP” is the shorthand notation
for intrinsically NP. Its definition will be given below.
The exact decomposition (2.2) has a remarkable fea-
ture. The explicit gauge dependence of the full gluon
propagator is exactly shifted fromits INP partto its PT
part. In other words, we want the INP part to be always
transverse, while leaving the PT part to be of arbitrary
gauge. This exact separation will have also a dynami-
cal ground. It is clear also that the PT part of the full
gluon propagator is, by definition, as much singular as
the free gluon propagator’s exact power-type IR singu-
larity. This is the first reason why the longitudinal part
of the full gluon propagator, which has the same exact
IR singularity, has been shifted to its PT part, and the
existence of which is determined by AF.

As was mentioned above, we want the INP gluon

DN (q) =i T (9)d""(¢?)

representS one unknown function (the full gluon form form factord|NP(q2) to be responsib|e for the deep
factor) as an exact sum of the two other unknown func- |R structure of the full gluon propagator, which is
tions, which can be always done. So at this stage theresaturated by severe IR singularities. So there is a
is no approximation made (only exact algebraic ma- problem how to take them into account analytically in
nipulations). We would like to let the PT part of this  terms of the full gluon propagator. For this aim, it is
exact decomposition to be responsible for the known convenient to introduce the auxiliary INP gluon form

UV asymptotics (since it is fixed by AF) of the full
gluon propagator, while the NP part is chosen to be
responsible for its unknown yet IR asymptotics. It is
worth emphasizing that in realistic models of the full
gluon propagator, the NP part usually correctly repro-
duces its deep IR asymptotics, determining thus the
strong intrinsic influence of the IR properties of the
theory on its NP dynamics. Evidently, the decompo-
sition (2.1) represents an exact subtraction of the PT
contribution at the fundamental gluon level, and con-
sequently both terms in the right-hand side of Eq. (2.1)
are determined in the whole momentum rari@eso).
Let us emphasize that the exact gluon form factor
d(g?) being also NP, nevertheless, is “contaminated”
by the PT contributions, whiléNP(42) due to the sub-
traction (2.1) is free of them, i.e., it is truly NP.
Substituting the exact decomposition (2.1) into the
full gluon propagator (1.1), one obtains

Duv(q) = DN (9) + Dl (q). (2.2)

factor as follows:

NP2 2%) = (22D fuld®). @4
where the exponent, is, in general, an arbitrary
complex number with Ry < O (see below). The
mass squared paramete¥® (the above-mentioned
mass gap) is responsible for the scale of NP dynam-
ics in the IR region in our approach. The functions
ka(qz) are dimensionless, regular at zero, by def-
inition, and otherwise remaining arbitrary, but pre-
serving AF in the UV limit. And finally the num-
ber k is a positive integer, i.e.k =0,1,2,3,...
(see below). Evidently, a real INP gluon form factor
d"NP(4?), which now should depend on the mass gap
as well, i.e..dNP(g?) = d'"NP(42, A?), is a sum over
all d'k':'P(qz, A?).

However, this is not the whole story yet. Since we
are especially interested in the deep IR structure of the
full gluon propagator, the arbitrary functionf, UR)
should be also expanded around zero in the form of the
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Taylor series in powers af?, i.e.,

[—k]— (2)m
fuld®)= 3 £ O

m=0

> (61 )" (m)

+ Z —f)\ (O) (2-5)

m=[—Ar]—
where[—Ax] denotes its integer number. Also
o d'"ka<q2>>
Loy O = (751((]2)"1 ey (2.6)

As a result, we will be left with the finite sum of power
terms with an exponent decreasing by unity starting
from —X. All other remaining terms from the Taylor
expansion (2.5), starting from the term having already
a PT IR singularity (the second sum in Eq. (2.5)),
should be shifted to the PT part of the full gluon
propagator in Eqg. (2.2). So the INP part of the full
gluon form factor becomes

leP(qz, AZ)

2§ @ g, @

m=0

and fk(o)(O) = fx(0), while the piece which is to be
shifted to the PT part of the full gluon propagator (2.2)
can be shown to have only the PT IR singularities
with respect to the gluon momentum, indeed [13]. In
this case the subscript;” should be replaced by the
subscript %", sinceA; = —-2—k, k=0,1,2,3,...

in four-dimensional QCD, i.e., QCD itself [13]. So
the simplest power-type NP IR singularity in QCD is
(g% 2. Thusd'NP(42, A?) describes the true (physi-
cal) NP vacuum of QCD, whilg;"P(¢2, A?) describe
the auxiliary ones, and the former is an infinite sum
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numerical factors and constants (for example, the cou-
pling constant) play no independent role in the pres-
ence of a mass gap.

It is instructive to show explicitly expansions for a
few first differentd/NP (42, A2), namely

leP( 2 Az)_

)

Azfo(o)(qz)fz,

(4,

= (42 S+ (49212 0)(4))
d NP( )

(42’ £0)(@) "+ (22 £ O (¢?)
£ 3@ P07

and so on. Apparently, there is no way that such kind
of an infinite series could be summed up into the
finite functions, i.e., functions which could be regular
at zero. That is why the above-mentioned smooth
gluon propagator is, in general, very unlikely to exist.
Let also note in advance that the simplest NP IR
singularity(g%)~2 is present in each expansion, which
emphasizes its special and important role (see below).
The expansion (2.7), on account of the relations
(2.8), can be equivalently written down as follows:

dINP( 2’ AZ)

(2.8)

1

k+m+1 (m)
(4,0

Mg

o > 1
(@°) ()Y o,

m=0

=
Il

o
o

(2.9)

WK

k

Il
o

where we use the relatig (’”) ) (0) = (A) gy 1w (0),
which obviously follows from the relation (2.6), since
all fk(”’)(O) have the dimensions of the inverse mass
squared in powers of, i.e., [f"(0)] = [A™2]" =
[A2]7™. Here vr.m(0) are dimensionless quantities,

of the latter ones. The expansion (2.7) is obviously the by def|n|t|on This expansion explicitly shows that the
Laurent expansion in the inverse powers of the gluon coefficient at each NP IR singularity is an infinite
momentum squared, which every term ends at the sim- series itself. It also shows that we can analyze the IR
plest NP IR singularityg?)~2 (see below). The only  properties of the INP part of the full gluon form factor
physical quantity (apart from the mass gap, of course) in terms of the mass gap? and the dimensionless
which can appear in this expansion is the coupling quantitiesp; ,,(0) only, which is very convenient from
constant squared in the corresponding powers. In QCD a technical point of view.

it is dimensionless and is evidently included into the It is time now to emphasize the distribution na-
fx functions. Let us note in advance that all the finite ture of severe IR singularities, i.e., they are to be cor-
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rectly treated by the distribution theory (DT) [14],
complemented by the dimensional regularization (DR)
method [15]. The regularization of the NP IR singular-
ities in QCD is determined by the corresponding Lau-
rent expansion in powers efas follows [13,14]:

(¢®) " = %a(k)[S“(q)](k) +iL. e— 0T, (2.10)

where a(k) is a finite constant depending only on
k and[6%(¢)]® represents théth derivative of the
3-function. Heree is the IR regularization parameter,
defined asD = 4 + 2¢ within a gauge-invariant DR
method [15]. It should go to zero at the end of the
computations. By f.t. is denoted the regular part of
the Laurent expansion. It plays no role in future
analysis [13,14]. We point out that after introducing
this expansion everywhere one can fix the number
of dimensions, indeed, i.e., pit = n = 4 for QCD
without any further problems, since there will be
no other severe IR singularities with respect &o
as it goes to zero, but those explicitly shown in
this expansion. Thus, as it follows from the Laurent
expansion (2.10) that is dimensionally regularized, any
power-type NP IR singularity, including the simplest
one, scales as/¢& as it goes to zero. Just this
plays a crucial role in the IR renormalization of the
theory within our approach. Concluding, it worth
underling that the structure of the NP IR singularities
in configuration space with Minkowski signature is
much more complicated that in momentum space with
Euclidean signature [14]. We also prefer to work in
the covariant gauges in order to avoid pecularities of
the noncovariant gauges [1,16], for example how to
untangle the gauge poles from the dynamical poles,
the only ones which are important for the calculation
of any physical observable.

3. IR renormalization of a mass gap

In the presence of such severe IR singularities
(2.10), all the “bare” parameters (dimensional or not,
does not matter) should, in principle, depend ©n
as well, i.e., they become IR regularized. Let us thus
introduce the following relation
(3.1)

A% =X(e)A%, €— 0,
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where X 4 (¢) is the corresponding IR multiplicative
renormalization (IRMR) constant. Here and below, the
guantities with an overbar are IR renormalized, by
definition, i.e., they exist as goes to zero. However,

in the above-mentioned paper [13] it has been proven
that neither the QCD coupling constant squared nor
the gauge fixing parameter are to be IR renormalized,
i.e., they are IR finite from the very beginning. As
was mentioned above, they can appear onlyip (0)
guantities. So these quantities also are IR finite from
the very beginning, which means that we can put
©i.m(0) = @r_»(0). This is so indeed, since the rest in
these quantities is simply the product of the numerical
factors like 7's in negative powers, eigenvalues of
the color group generators (we are not considering
the numbers of different colors and flavors as free
parameters of the theory), etc.

We already know that all the NP IR singularities,
which can appear in the full gluon propagator scale
as 1/e with respect toe (see Eq. (2.10)). So let us
introduce the so-called IR convergence condition as
follows:

ka(e)zeﬁk, € — 0T, (3.2)
where we putAy = Ax/ Y2 o(1/m!)@r.m(0), for
convenience. Then the cancellation of the NP IR
singularities with respect te will be guaranteed in
Eg. (2.9), and one obtains the finite (nonzero) result
in thee — 0T limit for everyk =0, 1,2,3,.... Here

A and Ay are some arbitrary, but finite constants, not
depending or as it goes to zero.

It makes sense to emphasize now that this IR
convergence condition should be valid at anyin
particular atk = 0, so from Eqg. (3.2) it follows
X a(e) = €Ag, € — 0T, which means that in this case
one is able to establish an explicit solution for the
mass gap’s IRMR constant. Thus the mass gap is IR
renormalized as follows:

A2 =eA? -0, (3.3)
where we include an arbitrary but finite constaty
into the IR renormalized mass gaf?, and retaining
the same notation, for simplicity. This means that
in what follows we can put it to unity, not losing

generality, i.e.Ag= 1.
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4, ZMME quantum model of the QCD ground . = -
quantu QCD grou :leq)[Aon(qz) ?

State
= 1+k 2k
The true QCD ground state is a very complicated +) (4% a(q?) i| (4.1)
confining medium, containing many types of gluon k=1

field configurations, components, ingredients and ob-
jects of different nature. Its dynamical and topological
complexity means that its structure can be organized
at both the quantum and classical levels [1,17]. Our
quantum, dynamical model of the QCD true ground
state is based on the existence and the importance o
such kind of the NP excitations and fluctuations of
gluon field configurations which are due to the self- pINP(, Ay — iTW(q)d'NP(qZ, AZ)

interaction of massless gluons only, without explic- " )

itly involving some extra degrees of freedom. They =iTu(q)A%(q?) ", (4.2)
are to be summarized (accumulated) into the INF’ Part gince only the first term in Eq. (4.1) survives in the
of the full gluon propagator, and are to be effectively "o+ jimit an arbitrary but finite constanip has
porrectly described bY its strolngly. glngular Structure poen included into the mass gap with retaining the
in the dee_p IR domain (]‘or S|mp[|0|ty, we wil caII_ same notation, for convenience. In fact, it includes the
them as singular gluon field configurations). At this 516 expansion in all powers of the coupling con-
stage, 't. IS d|ff|cu_lt to |<_jent|fy actually W_h'Ch type_ of stant squared and different combination of the finite
gauge f|e|_d conflg_uratlo_ns can be behind the singu- numerical factors only [13] (for brief explanation see
lar gluon field configurations in the QCD ground state text after Eq. (3.2) as well). Evidently, no other terms,

(i.e., to identify relevant field configurations: chromo- explicitly shown in the expansion (4.1) as the second
magnetic, self-dual, stochastic, etc.). However, if these sum, will survive in thee — 0* limit. They become

g?uge field conflg_urat!?nhs can bs absor_l(ajed |(;1to the terms of the order o, at least, in this limit (they
gluon propagator (i.e., if they can be considered as so- o, from(A2)2 ~ €2, while (422 always scales

Iutlonltho _the (I:orrssr?on_dln_g SD equatlor;s), theantS Sﬁ' as Ye¢). This is also true for the above-mentioned reg-
vere IR singular behavior is a common feature for all -/ part of the Laurent expansion (2.10).

of them. Being thus a general phenomenon, the exis-
tence and the importance of quantum excitations and
fluctuations of the severely IR degrees of freedom in-
evitably lead to the ZMME effect in the QCD ground
state. That is why we call our model of the QCD
ground state as the ZMME quantum model, or sim-
ply zero modes enhancement (ZME, since we work
always in the momentum space). For preliminary in-
vestigation of this model see our papers [18,19] and
references therein.

Our approach to the true QCD ground state, base
on the ZMME phenomenon there, in terms of the
gluon propagator, can be analytically formulated as in
Eqg. (2.2), but where now

wherea, = (A /Ay). In fact, Eq. (4.1) is already par-
tially IR renormalized with respect to the coefficients,
but not with respect to the mass gag and the NP
IR singularities(¢?) 2. This has been done for fur-
fIher convenience. After the IR renormalization it ef-
fectively becomes

4.1. Confinement criterion for gluons

It is worth discussing the properties of the obtained
solution for the full gluon propagator in more detalil.
Itis already clear that by the IR renormalization of the
mass gap only, we can render the full gluon propagator
IR finite from the very beginning, i.e., to pll(g) =
D(q) = D'NP(g) + DPT(g) (this has been rigorously
d proven in Ref. [13]). In principle, two different cases
should be considered due to the distribution nature of
the simplest NP IR singularity?) 2, which saturates
its INP part in Eq. (4.2).

(1) If there is an explicit integration over the gluon
DLNVP(CI, A) momentum, then from Eq. (4.2) it follows

=Ty (q)d"(q% A?) DNP(g) = DNP(q, A) =T, (q)A’7%6%(q). (4.3)

Iy
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i.e., in this case we have to replace the NP IR sin-  Separating between the NP IR singularities and the
gularity (4% ~2 in Eq. (4.2) by itss-type regulariza- PT IR ones on dynamical ground and introducing on
tion (2.10) atk = 0, which scales as/&. We also al- this basis the mass gap, we naturally come to the
ways should take into account the relation (3.3) for inevitable existence of the INP phase in QCD. In
the IR renormalization of the mass gap (which scales terms of the gluon propagator it can be defined as
ase) in order to express all relations in terms of the follows [13]: (i). It is always transverse, i.e., depends
IR renormalized quantities. Thietype regularization  only on physical degrees of freedom of gauge bosons,
is valid even for the multi-loop skeleton diagrams, (ii). Before the IR renormalization, the presence of
where the number of independent loops is equal to the NP IR singularitie$g?) 2%, k=0,1,2,3,...is
the number of the gluon propagators. In the multi-loop only possible, (iii). After the IR renormalization, the
skeleton diagrams, where these numbers do not co-INP part of the full gluon propagator is fully saturated
incide (for example, in the diagrams containing three by the simplest NP IR singularity and all other NP
or four-gluon proper vertices), the general regulariza- IR singularities will be additionally suppressed in the
tion (2.10) should be used (i.e., derivatives of the e — 0T limit, (iv). There is an inevitable dependence
functions), and not the product of ttdefunctions at on the mass gap?, so that when it formally goes to
the same point, which has no mathematical meaning zero, then the INP phase vanishes, while the PT phase
in the DT sense [14]. survives.

(I If there is no explicit integration over the
gluon momentum, then the full gluon propagator is
reduced toD(q) = Dy, (q) = 551(61) in the e — 5. Conclusions
ot limit, since in this case the functiogg?)~2 in
Eq. (4.2) cannot be treated as the distribution. Only ~ Emphasizing the highly nontrivial structure of the
the relation (3.3) again comes out into the play. So the true QCD ground state in the deep IR region, one can
INP part of the full gluon propagator (4.2) in this case conclude.

disappears asase — 0T, namely
(1) The self-interaction of massless gluons is only

_ _ responsible for the ZMME effect in the true QCD
DINP(q. 4% ~e, e— 0. (4.4) vacuum, which in its turn, is to be taken into account
by the deep IR structure of the full gluon propagator.
This means that any amplitude (more precisely its (2) The full gluon propagator thus is inevitably
INP part) for any number of soft-gluon emissions more singular in the IR than its free counterpart (the
(no integration over their momenta) will vanish in  smooth in the IR gluon propagator is a gauge artifact,
the IR limit in our picture. In other words, there since itis possible in the Landau gauge only).
are no transverse gluons in the IR, i.e., at large (3) This requires the existence of a mass gap,
distances (small momenta) there is no possibility to which is responsible for the NP dynamics in the true
observe gluons experimentally as free particles. So QCD vacuum. It appears on dynamical ground due to
this behavior can be treated as the gluon confinementthe self-interaction of massless gluons only.
criterion (see also Ref. [12]), and it supports the (4) We define the NP and the PT IR singularities as
consistency of the exact solution (4.2) for the INP part more severe than and as much severe/a$, fespec-
of the full gluon propagator. Evidently, this behavior tively, which is the power-type, exact IR singularity of
does not explicitly depend on the gauge choice in the the free gluon propagator.
full gluon propagator, i.e., it is a manifestly gauge- (5) We decompose algebraically (i.e., exactly) the
invariant as it should be, in principle. Concluding, full gluon propagator as a sum of its INP and PT
it is worth underlining that the gluon confinement parts. We additionally distinguish between them dy-
criterion (4.3) is valid in the general case as well, namically by the different character of the IR singular-
i.e., before explicitly showing that the QCD coupling ities in each part.
constant squared and the gauge fixing parameter are (6) We have exactly established the deep IR struc-
IR finite [13]. ture of the full gluon propagator, represented by its
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INP part, as an infinite sum over all possible NP IR
singularities.

(7) The next step is to regularize them correctly,
i.e., to use the Laurent expansion (2.10) that is dimen-
sionally regularized with respect to the IR regulariza-
tion parametee.

(8) The IR renormalization program is based on
an important observation that the NP IR singularities
(g% ~27*, being distributions, always scale agel
not depending on the power of the singularity
i.e., (¢g9)~2% ~ 1/e. It is easy to understand that
otherwise none of the IR renormalization program in
the INP phase of QCD and QCD as a whole would be
possible.

(9) The IR renormalization of the initial mass gap
(Eg. (3.3)) is only needed in order to fix uniquely and
exactly the IR structure of the full gluon propagator in
QCD. It is saturated by the simplest NP IR singularity,
the famous(g?)~2, which leads to the linearly rising
potential between heavy quarks “seen” by lattice
simulations [3]. The final mass gap gains contributions
from all orders of PT in the QCD coupling constant
squared, which remains IR finite.

(10) On this basis, we have formulated the ZMME
model of the true QCD ground state. Due to the
distribution nature of the NP IR singularities, two
different types of the IR renormalization of the INP
part of the full gluon propagator are required.

(11) This makes it possible to establish the gluon
confinement criterion in a manifestly gauge-invariant
way.

(12) In the same way, we define exactly the INP
phase in QCD at the fundamental gluon level. The cor-
responding decompoasition of the full gluon propagator
is only needed in order to firmly control the IR region
in QCD within our approach (only it contains explic-
itly the mass gap).

(13) All this makes it possible to determine unam-
biguously the interaction between quarks concerning
its pure gluon (i.e., nonlinear) contribution.

These somehow astonishingly results have been
achieved at the expense of the PT part of the full gluon
propagator. It remains of arbitrary covariant gauge
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and its functional dependence cannot be determined.
However, let us note in advance that our theory (which
we call INP QCD) will be additionally defined by the
subtraction of all types of the PT contributions in order
to completely decouple it from QCD as a whole (the
first step in these subtractions has been already done
in Eqg. (2.1). See also the extended paper in Ref. [13]).
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