219 research outputs found

    INVESTIGATION ON THE CERVICAL SPINE MOTION

    Get PDF
    Several investigations on the problem of cervical spine motion describe the difficulties of measuring the movement exactly. Those models had to deal with the difficulties in fixation of the human head and to track the range of motion in degrees with respect to the three directions of movement; flexionlextension, lateral bending and rotation. The only objective method of measuring cervical spine movement and COlC1 or C11C2 displacements is the functional computer tomogram as described by Dvorak et al. The aim of our survey has been to identify differences between the "normaln and pathologic cervical spine (after whip leash injuries, disc diseases or spondylarthrosis in sport) as it relates to the range of movement and angular velocity. Two groups of 15 probants have been tested by a new computer-controlled setup. By using a three-dimensional motion-analysis-system special rigid-body software has been developed to calculate the cervical spine motion in all three coordinate directions. This represents the first time that it has been possible to obtain results about the movement and their time-derivations. These angles and the angular velocities were traced for 15 normal individuals and for 15 persons suffering with cervical spine problems. The setup for testing patients was no more than a small frame like sunglasses which gave exact information about the movement in space. This information gave accurate data which permitted calculation of the amount of motion concerning the patient's personal orientation in space and was additionally used to compute the coupled motions to the probants reference coordinate system. The present investigation demonstrated significant differences in the range of motion between normal individuals and patients with cervical spine problems in all defined direction. Our first conclusion so far is, that there are possibilities to measure those differences in cervical spine motion by the presented biomechanical measurement setup very easily. Furthermore, the setup is capable of providing accurate results about the range of motion, coupled motion and their time-derivations rapidly without the use of x-ray technology and x-ray exposition for the patient. These possibility and the good results are very important to judge problems after "ship leash injuries" and other cervical spine diseases in sport. The positive results raise the possibility that the technique may be employed to judge problems and other cervical spine injuries associated with sport. We conclude that the biomechanical measurement-setup presented here provides an easy method to measure differences in cervical spine motion

    Particles in non-Abelian gauge potentials - Landau problem and insertion of non-Abelian flux

    Get PDF
    We study charged spin-1/2 particles in two dimensions, subject to a perpendicular non-Abelian magnetic field. Specializing to a choice of vector potential that is spatially constant but non-Abelian, we investigate the Landau level spectrum in planar and spherical geometry, paying particular attention to the role of the total angular momentum J = L +S. After this we show that the adiabatic insertion of non-Abelian flux in a spin-polarized quantum Hall state leads to the formation of charged spin-textures, which in the simplest cases can be identified with quantum Hall Skyrmions.Comment: 24 pages, 10 figures (with corrected legends

    Lipidomic profiling of rat hepatic stellate cells during activation reveals a two-stage process accompanied by increased levels of lysosomal lipids

    Get PDF
    Hepatic stellate cells (HSCs) are liver-resident cells best known for their role in vitamin A storage under physiological conditions. Upon liver injury, HSCs activate into myofibroblast-like cells, a key process in the onset of liver fibrosis. Lipids play an important role during HSC activation. Here, we provide a comprehensive characterization of the lipidomes of primary rat HSCs during 17 days of activation in vitro. For lipidomic data interpretation, we expanded our previously described Lipid Ontology (LION) and associated web application (LION/Web) with the LION-PCA heatmap module, which generates heatmaps of the most typical LION-signatures in lipidomic datasets. Furthermore, we used LION to perform pathway analysis to determine the significant metabolic conversions in lipid pathways. Together, we identify two distinct stages of HSC activation. In the first stage, we observe a decrease of saturated phosphatidylcholine, sphingomyelin, and phosphatidic acid and an increase in phosphatidylserine and polyunsaturated bis(monoacylglycero)phosphate (BMP), a lipid class typically localized at endosomes and lysosomes. In the second activation stage, BMPs, hexosylceramides, and ether-linked phosphatidylcholines are elevated, resembling a lysosomal lipid storage disease profile. The presence of isomeric structures of BMP in HSCs was confirmed ex vivo in MS-imaging datasets of steatosed liver sections. Finally, treatment with pharmaceuticals targeting the lysosomal integrity led to cell death in primary HSCs but not in HeLa cells. In summary, our combined data suggest that lysosomes play a critical role during a two-stage activation process of HSCs

    Tibial stress fracture after computer-navigated total knee arthroplasty

    Get PDF
    A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers

    Opportunities From the Digital Revolution: Implications for Researching, Publishing, and Consuming Qualitative Research

    Get PDF
    In the 1990s, the term 'online' research emerged as a new and vibrant suite of methods, focused on exploitation of sources not collected by traditional social science methods. Today, at least one part of the research life cycle is likely to be carried out 'online,' from data collection through to publishing. In this article, we seek to understand emergent modes of doing and reporting qualitative research 'online.' With a greater freedom now to term oneself a 'researcher,' what opportunities and problems do working with online data sources bring? We explore implications of emerging requirements to submit supporting data for social science journal articles and question whether these demands might disrupt the very nature of and identity of qualitative research. Finally, we examine more recent forms of publishing and communicating research that support outputs where data play an integral role in elucidating context and enhancing the reading experience

    Fear expression is suppressed by tyrosine administration

    Get PDF
    Animal studies have demonstrated that catecholamines regulate several aspects of fear conditioning. In humans, however, pharmacological manipulations of the catecholaminergic system have been scarce, and their primary focus has been to interfering with catecholaminergic activity after fear acquisition or expression had taken place, using L-Dopa, primarily, as catecholaminergic precursor. Here, we sought to determine if putative increases in presynaptic dopamine and norepinephrine by tyrosine administered before conditioning could affect fear expression. Electrodermal activity (EDA) of 46 healthy participants (24 placebo, 22 tyrosine) was measured in a fear instructed task. Results showed that tyrosine abolished fear expression compared to placebo. Importantly, tyrosine did not affect EDA responses to the aversive stimulus (UCS) or alter participants' mood. Therefore, the effect of tyrosine on fear expression cannot be attributed to these factors. Taken together, these findings provide evidence that the catecholaminergic system influences fear expression in humans

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \ue2 '0.24 to \ue2 '0.73; P < 1.49 7 10 \ue2 '4), and lower thickness in the precentral gyri bilaterally (d = \ue2 '0.34 to \ue2 '0.52; P < 4.31 7 10 \ue2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \ue2 '1.73 to \ue2 '1.91, P < 1.4 7 10 \ue2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \ue2 '0.36 to \ue2 '0.52; P < 1.49 7 10 \ue2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \ue2 '0.29 to \ue2 '0.54; P < 1.49 7 10 \ue2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \ue2 '0.27 to \ue2 '0.51; P < 1.49 7 10 \ue2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \ue2 '0.0018; P < 1.49 7 10 \ue2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed
    corecore