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Abstract. In this paper, we study charged spin-1/2 particles in two dimensions,
subjected to a perpendicular non-Abelian magnetic field. Specializing to a choice
of vector potential that is spatially constant but non-Abelian, we investigate
the Landau level spectrum in planar and spherical geometry, paying particular

attention to the role of the total angular momentum EJ = EL + ES. Then, we show
that the adiabatic insertion of non-Abelian flux in a spin-polarized quantum Hall
state leads to the formation of charged spin textures, which in the simplest cases
can be identified with quantum Hall Skyrmions.
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1. Introduction

It has long been known that the motion of charged particles in a plane and in the presence
of a perpendicular magnetic field is highly special. In classical mechanics, particles exhibit
cyclotron motion, while quantum mechanics leads to the Landau level band structure [1], with
each level providing a macroscopic number of one-particle states that are strictly degenerate
in energy. In this setting, free electrons can form integer quantum Hall states, with intricate
topological properties resulting in a quantization of the Hall conductance. Adding interactions
leads to a plethora of remarkable many-body states, collectively known as fractional quantum
Hall states. Such states are known to admit excitations with fractional charge and fractional
statistics. The possibility that specific quantum Hall states have excitations with non-Abelian
braid statistics has opened the exciting prospect of applications in the realm of topological
quantum computation [2].

A setting that is physically very different from, but mathematically similar to, that of two-
dimensional (2D) electrons in a perpendicular field is that of rapidly rotating cold atoms. In
this analogy, the vorticity of a rotating liquid is akin to magnetic flux in the electron system.
The limit of rapid rotation leads to a Landau level structure and one expects the formation of
atomic quantum Hall states (see [3] for a review). The path towards the experimental realization
of atomic quantum Hall states is extremely challenging, but the lowest Landau level (LLL) has
been reached [4] and there are indications of the formation of incompressible quantum liquids
in small clusters [5].

The cold atom setting allows for yet another variation on the same theme: cold atomic
gases subjected to external time-dependent potentials that are such that they mimic the effects
of magnetic fields or, equivalently, of rotation. Recent proposals for implementing such artificial
gauge fields can be found in [6]–[12]; a successful experimental realization is reported in [13].
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Very interestingly, the latter setup is flexible enough to allow for a generalization of regular,
Abelian, magnetic fields, corresponding to the U (1) gauge symmetry of Maxwell’s theory, to
gauge fields pertaining to non-Abelian symmetries. The simplest version of this idea is the
case of spin-1/2 particles subjected to an external gauge potential for a non-Abelian U (2)
symmetry [14]–[17]; see [18] for the case of spin-1 particles. Remarkably, very similar if not
identical Hamiltonians arise in the original setting of a 2D electron gas in a perpendicular
magnetic field if the Rashba [19] and Dresselhaus [20] spin–orbit coupling terms are taken
into account. This connection can be exploited to study the physics of the quantum spin Hall
effect in the context of cold atoms [21, 22].

With this, there is ample reason to study non-Abelian external gauge potentials with
special emphasis on what is new as compared to the Abelian case. For particles confined to
a lattice geometry, the non-Abelian case leads to an interesting generalization of the ‘Hofstadter
butterfly’ fractal one-particle spectrum, dubbed the ‘Hofstadter moth’ [15]. The Landau level
problem and the possibility of realizing (fractional) quantum Hall states with particles subjected
to non-Abelian gauge fields have already attracted much attention [16, 17, 23, 24].

In this paper, we analyze non-interacting spin-1/2 particles in an external non-Abelian
field and reflect on some of the fundamental differences with the Abelian setup. We analyze
and solve the Landau level problem in spherical geometry, highlighting the fundamental role
of the total angular momentum EJ = EL + ES, which commutes with the Hamiltonian. In this setup,
the non-Abelian field penetrating the sphere agrees with the asymptotic (large radius) limit of
the non-Abelian magnetic monopoles first written by ’t Hooft and Polyakov [25]. One reason for
focusing on spherical geometry is that this geometry is known to be particularly useful for the
numerical study of many-body states arising on the addition of interactions to the Landau-level
problem [26].

We then proceed to the process where a non-Abelian flux is inserted in the background of
an otherwise Abelian flux. In our simplest case, Jz = L z + Sz remains a good quantum number
during the flux insertion. This suggests a prominent role for transitions where particles flip
their spin while at the same time changing their L z by (plus or minus) one unit, meaning that
they jump to an adjacent Landau level orbital of the Abelian problem. This is indeed what
happens: starting from a spin-polarized integer quantum Hall state, inserting non-Abelian flux
at the origin leads to a state where, depending on their distance from the origin, particles have
an amplitude for changing their spin and moving radially in or out. The resulting state is a spin
texture of unit electric and topological charge, which is easily identified with a quantum Hall
Skyrmion. More general external fields lead to more intricate textures.

In the literature, thought experiments involving the insertion of (Abelian) flux are often
invoked as a probe of the characteristics of the quantum phase of a many-body system. One
spectacular example is the argument by Laughlin that the insertion of a unit flux through a
gapped medium with Hall conductance σH = νe2/h leads to the nucleation of an excitation
with fractional charge e∗ = νe [27]. In the case of the quantum spin Hall state, the insertion of
flux leads to spin-full excitations at the sample edges [28]. One motivation for the present study
has been the wish to extend these considerations to the case of non-Abelian flux.

We will briefly comment on possible experimental realization of our ideas. In the case of
electrons, the integer quantum Hall reference state is readily available, and the non-Abelian flux
can in principle, in the presence of spin–orbit coupling, be generated via a perpendicular electric
field (see section 3). Integer quantum Hall states for cold atomic fermions are expected to arise
in rapidly rotating systems [29] or in laser-induced artificial gauge fields [30]. The paper [15]
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has indicated how non-Abelian external gauge fields can be generated with the help of external
lasers; if such laser pulses can be spatially focused, this will result in pulses of non-Abelian
flux similar to the ones we propose here. Clearly these external fields will deviate from our
expressions in the details; we expect, however, that the spin textures that we predict here are
relatively robust. Reading out spin textures of effective spin-1/2 atomic states is possible; see,
for example, [31], where a Skyrmion lattice for effective spin-1/2 bosons was imaged.

This paper is organized as follows. We start (section 2) with a general exposition on
non-Abelian gauge fields. Next (section 3), we discuss the non-Abelian Landau problem, with
particular emphasis on spherical geometry. Section 4 discusses the response of spin-full particles
to the insertion of non-Abelian flux in an otherwise Abelian background. We end with some
conclusions in section 5. Appendices A–D present further details and background material.

2. On non-Abelian gauge fields

Before we start to investigate the Landau problem, we start with a quick review of non-
Abelian gauge fields, highlighting the differences with the Abelian case. We are interested in the
quantum problem of a particle coupled to an external non-Abelian gauge field EA. In a cold atom
experiment, these fields are controlled by external lasers. Therefore in the present paper, we are
not concerned with the dynamics of these gauge fields, which are treated as control parameters.
The Hamiltonian for a non-relativistic particle of mass m in an external magnetic field is

H =
1

2m
( Ep − EA)2. (1)

In the non-Abelian setup, each component of the vector potential EA is a matrix,

EA = Ax Eux + Ay Eu y + Az Euz = Aa Eua. (2)

The corresponding magnetic field (or curvature) EB is

EB = E∇ × EA −
i

h̄
EA × EA, (3)

or equivalently in components

Ba = εabc

(
∂b Ac −

i

h̄
Ab Ac

)
. (4)

The first term is the usual curl, while the second term EA × EA vanishes identically for Abelian
gauge fields. However, it is non-zero in the generic non-Abelian case, as the components Aa

of the potential may not commute. In contrast to the Abelian case, even a uniform potential EA
can produce a non-zero magnetic field. Introducing the covariant derivative is ED = E∇ −

i
h̄

EA =

i
h̄ ( Ep − EA), the magnetic field takes the following compact form,

EB = ED × EA. (5)

A gauge transformation is simply a unitary transformation U and a change of EA, such that ED
transforms covariantly,

EA → U EAU † + ih̄U E∇U †. (6)
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Then the following quantities transform covariantly (note that the magnetic field is no longer
gauge invariant),

ED → U EDU †, EB → U EBU †, (7)

and Hamiltonian (1) is clearly a covariant quantity,

H =
1

2m
( Ep − EA)2 = −

h̄2

2m
ED2. (8)

In the Abelian case, two field configurations EA yielding the same magnetic field are necessarily
equivalent up to a gauge transformation (on a simply connected space). This is no longer the
case for non-Abelian gauge groups. In particular, it is known from [32] that there are two gauge-
inequivalent kinds of non-Abelian vector potentials that produce a uniform EB field (although this
statement is completely general, we illustrate this for EB = 2σz Euz):

• A commuting field with linear potential EA =
1
2

EB × Er = σz(−y, x, 0), for which only E∇ × EA
contributes to the field strength. This case is Abelian in nature, in the sense that all
components of the potential vector commute with each other.

• A uniform non-commuting potential, for instance EA = (−σy, σx , 0), such that EB = −
i
h̄

EA ×

EA. This is only possible in a non-Abelian gauge group.

Although these two kinds of potentials give rise to the same magnetic field, they lead to
completely different physical properties. While the first kind induces a magnetic length,
the Aharanov–Bohm effect and the Landau level discrete spectrum, the second one has no
Aharanov–Bohm effect, and the spectrum of a particle in such an external field configuration is
continuous.

3. The non-Abelian Landau problem: particles in a perpendicular uniform non-Abelian
external field

In this paper, we focus on the simplest case of non-Abelian gauge fields, when Aa and Ba are
2 × 2 Hermitian matrices. The gauge group is then U (2)= U (1)× SU(2) and decomposes into

• An Abelian U (1) part, namely the fields proportional to the identity matrix I;
• A non-Abelian SU(2) component, whose fields are linear combinations of the Pauli

matrices σa.

The U (2) case is a natural choice as it is the simplest case allowing non-Abelian gauge
fields. However, there is a deeper reason for focusing on U (2) gauge fields. Very similar
physics can arise in a 2D electron gas when taking into account relativistic corrections in the
Pauli–Schrödinger equation, such as the Thomas term,

HT = −
qh̄

4 m2c2
Eσ · ( EE × Ep). (9)

This spin–orbit coupling term plays a crucial role in spintronics [33], and it mimics the effect of
a non-Abelian gauge potential,

EA ∼ EE × Eσ . (10)

In this section, we study the quantum problem of a non-relativistic particle confined to a 2D
manifold in the background of a uniform perpendicular U (2) magnetic field. We present the
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spectra for two different geometries: the plane and the sphere. It turns out that this Hamiltonian
can be mapped exactly to the one of a 2D electron in a perpendicular U (1) magnetic field when
the Thomas term is present and an additional perpendicular U (1) electric field EE is applied.

3.1. On the plane

To set this problem on the plane, we consider a perpendicular, uniform magnetic field EB = Bz Euz,
where Bz is a 2 × 2 Hermitian matrix. We can always choose a basis where the matrix Bz is
diagonal,

Bz = BI+
2

h̄
β ′2σz = B

(
I+ 2β2σz

)
. (11)

We introduced the pure number β =
β ′

lm B involving the magnetic length lm =

√
h̄
B (for B > 0).

From now on, we work with h̄ = 1. This magnetic field is a U (2) matrix, and is a superposition
of a U (1) field B and an SU(2) field 2β2 Bσz. In view of the previous discussion, there is
ambiguity in the notion of a non-Abelian uniform magnetic field, and one has to specify the
non-Abelian part of the potential EA. The first kind of potential EA =

1
2

EB × Er boils down to
an Abelian U (1)× U (1) gauge group, and the physics is simply that of two non-interacting
species of particles coupled to different Abelian magnetic fields. The second kind, however,
a constant and non-commutative potential, is much more interesting and leads to new physics
[16, 17, 23, 24],

EA =
B

2

−yI
xI
0

+β ′

−aσy

a−1σx

0

. (12)

The Hamiltonian describing a particle confined to a plane in this non-Abelian background,

H =
1

2m
( Ep − EA)2, (13)

enjoys the translation symmetry of the plane. Since the non-Abelian part of EA is uniform,
the magnetic translation operators are insensitive to the non-Abelian part and have the usual
expressions,

Tx =

(
−i∂x −

y

2l2
m

)
, Ty =

(
−i∂y +

x

2l2
m

)
, (14)

which implies immediately the Abelian Aharanov–Bohm effect,

[Ea · ET , Eb · ET ] = −i
(Ea × Eb) · Euz

l2
m

I. (15)

The rhs is simply the flux of the Abelian part of the magnetic field BI through the parallelogram
delimited by the vectors Ea and Eb, and the (Abelian) magnetic length scale is lm. Only the Abelian
part of the magnetic field is quantized, and the number of states in a given Landau level will
only depend on the Abelian field strength B.

It turns out that the problem of a particle in such a non-Abelian external field can be mapped
exactly to the Hamiltonian of 2D electron in the presence of both the Rashba and the Dresselhaus
spin–orbit interaction [24], and it was first solved in this context by Zhang [34].
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Having in mind to solve this problem on the sphere in the next section, we demand
rotational symmetry around the z-axis, and we focus on the symmetric gauge,

EA =
B

2

−yI
xI
0

+β ′

−σy

σx

0

. (16)

This symmetric case corresponds to the absence of the Dresselhaus interaction in [34], and
Hamiltonian (13) is much simpler to solve in this case. Moreover, it can be mapped to a Thomas
term (9) in the presence of a perpendicular uniform electric field EE ∝ β ′

Euz. This Hamiltonian
can be expanded as

H = ωc(a
†a +

√
2β(a†σ+ + aσ−)+ 1

2(1 + 2β2)), (17)

where a and a† are the usual annihilation and creation operators appearing in the Landau
problem (see appendix A). Up to a change of spin basis U = σx , this is nothing but the celebrated
Jaynes–Cummings Hamiltonian, and it is straightforward to obtain its spectrum,

E0 = ωc(
1
2 +β2), (18)

E±

n = ωc

(
n ±

√
2β2n + 1

4 +β2

)
. (19)

3.2. On the sphere

It can be rather instructive to solve such a problem on a sphere instead of the plane. The surface
of the sphere being finite, the degeneracy of the Landau levels becomes finite too, which is
very interesting for numerics. Moreover, the translation invariance of the plane is promoted to
the rotational symmetry of the sphere, and the spectrum decomposes into SU(2) multiplets. In
the Abelian case, this geometry was first solved in [35] and later used by Haldane [26] in the
context of the quantum Hall effect. In order to fix our notations, we recall these main results in
appendix B.

3.2.1. Field configuration. A uniform perpendicular magnetic field implies the presence of
a magnetic monopole at the center of the sphere. In the Abelian case (see appendix B), the
corresponding potential EAAb must have a singularity (Dirac string) somewhere on the sphere,
for instance at the south pole θ = π ,

EAAb =
N8

2

1 − cos(θ)

r sin(θ)
Euφ. (20)

When Dirac’s quantization condition N8 ∈ Z is satisfied, this singularity has no physical
consequence as it can be moved around through gauge transformations [36]. This is the well-
known quantization of the magnetic flux piercing the sphere, which must be an integer number
N8 of flux quanta,∫

S

EB · d ES = 2πN8, i.e. Br =
N8

2r 2
. (21)

To this U(1) potential (20), we add the following SU(2) component,

EA(α)= EAAb +α
Er × Eσ

r 2
. (22)
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Figure 1. Band structure for the non-Abelian Landau problem on the sphere as a
function of the non-Abelian field strength α. This is the case for N8 = 7 Abelian
flux quanta, and only the lowest part of the spectrum is shown.

Once again, this corresponds to a Thomas term (9) with a radial uniform electric field EE ∝ α Eur,
and this will turn out to be the correct extension of the symmetric gauge on the plane (16). The
corresponding magnetic field is

Br =
N8

2r 2
− 2α(1 −α)

(Er · Eσ)

r 3
. (23)

It is quite remarkable that the strength α of the non-Abelian field need not be quantized, as
the vector potential Er× Eσ

r2 has no singularity on the sphere: α can be any real number. As the
radial U (1) field is created by a magnetic monopole, it is not very surprising that the SU(2)
counterpart involves a non-Abelian monopole. Indeed, the potential EA = α Er× Eσ

r2 is nothing but
the large distance asymptotic of a true non-Abelian monopole [25], and in this context it is well
known that there is no need for a Dirac string, nor is there a singularity anywhere on the sphere.

3.2.2. The Hamiltonian and the spectrum. The details of the derivation of the spectrum of
a particle confined to a sphere of radius r in this non-Abelian background can be found in
appendix C. The Hamiltonian is the following,

H(α)=
1

2mr 2
[Er × ( Ep − EA(α))]2, (24)

which is a scalar under global rotations generated by EJ = EL + ES, where EL is the angular
momentum and ES =

1
2 Eσ is the spin. Its eigenstates form SU(2) multiplets corresponding to the

decomposition of the Hilbert space into irreducible representations of EJ ,

H= ( j0)⊕ 2 ( j1)⊕ 2 ( j2)⊕ · · · ⊕ 2 ( jn)⊕ · · · , (25)

where jn =
N8−1

2 + n. The corresponding eigenvalues are (see figure 1)

E0(α)=
1

2mr 2

(
N8

2
− 2α(1 −α)

)
, (26)
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E±

n (α)=
1

2mr 2

n(N8 + n)− 2α(1 −α)±

√
(2α− 1)2 n (N8 + n)+

(
N8

2

)2
. (27)

As can be seen in figure 1, multiple level crossings are observed. This also occurs in the planar
case [23], which can be recovered from the sphere in the limit of infinite radius.

3.2.3. Recovering the plane. The non-Abelian EA field we considered on the sphere is indeed
the correct extension of the planar symmetric gauge (16). The planar problem is recovered by
taking the sphere radius r → ∞ while keeping constant the gauge field strength on the surface,

N8

2r 2
∼ B,

α

r
∼ β ′

=
β

√
B
. (28)

The vector potential and the magnetic field become in this limit

EA →
B

2

−yI
xI
0

+β ′

−σy

σx

0

 EB → B(I+ 2β2σz)Euz. (29)

It is straightforward to check that the eigenvalues of the Hamiltonian E±

n (α) behave in the planar
limit as

E0(α)→ ωc(
1
2 +β2), (30)

E±

n (α)→ ωc

(
n ±

√
2β2n + 1

4 +β2

)
, (31)

reproducing the planar spectrum. Moreover, one can expand the Hamiltonian on the sphere in
terms of EL ,

H =
1

2mr 2

[
EL2

−

(
N8

2

)2

+ 2α

(
EL +

N8

2

Er

r

)
· Eσ + 2α2

]
, (32)

and using the Holstein–Primakoff representation,

L+ = b†
√

N8 + 2a†a − b†b, (33)

L− =

√
N8 + 2a†a − b†b b, (34)

L z = b†b −
N8

2
− a†a, (35)

we recover the planar Hamiltonian

H → ωc[(a
†a + 1

2)+
√

2β(aσ + a†σ+)+β2]. (36)

This is not surprising in view of the mapping of this problem with a spin-1/2 electron under
an effective non-Abelian potential coming from the Thomas term with a perpendicular electric
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field. Indeed, the infinite radius limit of a sphere in a radial EE and EB field is clearly the plane
under perpendicular EE and EB fields.

In summary, we analyzed the non-Abelian Landau problem on the sphere and obtained the
spectrum. The degeneracy of Abelian Landau levels is preserved, and the number of states per
area remains 1/ l2

m, as we expected from the absence of a non-Abelian Aharanov–Bohm effect
on the plane. Indeed, the Abelian Aharanov–Bohm (15) effect enforces a minimum surface of
l2
m for the wavefunctions.

4. Adiabatic insertion of non-Abelian flux

For the non-Abelian gauge group SU(2), there is no notion of a ‘quantum of non-Abelian flux’.
To appreciate this fact, we recall that in an Abelian gauge theory the number of flux quanta is
nothing but the winding number of the potential around the flux tube, and this integer cannot
be continuously deformed. The homotopy group of U (1) is the set of integers Z. However, the
situation is different for the gauge group SU(2), which has a trivial homotopy group so that
any flux insertion can be smoothly deformed away. This explains why there is no non-Abelian
analog of the notion of flux quantum, in agreement with the absence of quantization of the
non-Abelian field strength on the sphere.

Nonetheless, we wish to consider the insertion of non-Abelian flux in a quantum Hall
(qH) fluid. In the Abelian case, the celebrated Laughlin argument shows that the insertion of
a quantum of Abelian flux leads to the accumulation of electric charge ±νe, with ν being the
filling fraction of the qH liquid. Here we wish to start from an (integer) qH fluid and to insert, at
given location O, a non-Abelian field configuration δ EA centered at O and chosen such that (i) it
generates no magnetic field away from O and (ii) it can be removed by a gauge transformation.
After this process, we perform a gauge transformation on the evolved state, in such a way that
it lives in the same Hilbert space as the state we started off with.

Before entering into the details, we briefly sketch the well-known argument for the Abelian
case, as discussed by Laughlin [27] and Halperin [37]. This leans heavily on the existence of a
gap separating the ground state of the qH liquid from its excited states. Take a qH droplet and
adiabatically insert a flux quantum at the origin, δAφ =

−1
r . This value of the flux is very special

in the sense that it creates no Aharanov–Bohm effect and therefore it can be gauged away.
This means that after this adiabatic insertion, one can map the system back to its original field
configuration. The net effect of this process is a charge transport away from the origin leaving
behind a quasihole, as single particle states in the LLL (see appendix A) evolve according to

|m〉 → |m + 1〉. (37)

The usual description of adiabatic processes involves Berry phases [38, 39], or more generally
Berry matrices [40] in the presence of ground state degeneracies. Before we specify our system
in detail, we first give a quick review of the derivation of the Berry matrix.

4.1. The Berry matrix

Considering an adiabatic process in the presence of energy degeneracies, the Berry phase should
be generalized as was done in [40]. We will present the details of the Berry matrix that are
needed for our purposes. Suppose that the Hamiltonian is a smooth function of a parameter
{λ(t)} and at every point in parameter space has a degenerate ground state energy separated
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from higher levels by some finite gap. Starting from a state |α(0)〉 belonging to the lowest
energy subspace of the total Hilbert space HE(0), the adiabatic theorem tells us that we end up
in an eigenstate, which is again an element of the subspace of ground states at time t , |α(t)〉.
During this process, the eigenstates obey the Schrödinger equation H(λ)|α(λ)〉 = Eα(λ)|α(λ)〉.
Since nothing forbids this state to pick up a phase or a unitary matrix, the final state can be
written as

|ψα(t)〉 = e−(i/h̄)
∫ t

0 E0(t ′)dt ′UB(t)|α(t)〉, (38)

where UB is the Berry matrix generalizing the Berry phase. It is a unitary mapping UB(t) :
HE0(t) →HE0(t) from the subspace of ground states to itself such that UB(0)= I. Such a map is
known as a holonomy, cf [39]. The phase in front of the Berry matrix is the dynamical phase,
depending on the evolution of the ground state energy, but it will not be of any importance for
our consideration, so we will discard it. The Berry matrix can be written in terms of path ordered
integrals,

UB(t)= P exp

[
i
∫ t

0
A(t ′) dt ′

]
(39)

= I+
∞∑

n=1

in

∫ t

0
dtn

∫ tn

0
dtn−1 . . .

∫ t2

0
dt1A(t1) . . .A(tn), (40)

where Aα,β ≡ i〈α(t)| d
dt |β(t)〉 is the Berry connection, which behaves under unitary

transformations as a gauge potential.

4.2. Choosing the field configuration

We consider a non-relativistic spin-1/2 particle confined to the plane in a perpendicular
magnetic field, Bz = BI. Writing the vector potential, we use cylindrical coordinates and choose
the symmetric gauge

Aφ =
Br

2
I. (41)

The Hamiltonian of the system H =
1

2m ( Ep − q EA)2I acts identically on both spin states, i.e. the
Landau levels are doubly degenerate. We only consider the LLL and write for the eigenstates
|m, ε〉 where ε ∈ {↑,↓}. For more details of these eigenstates, see appendix A. To derive the
effect of inserting a field configuration δ EA(r) in this system, we will consider two particular
field configurations labeled as M = 0 and M = −1, respectively. In appendix D, we present a
generic configuration, labeled by an integer M , of which these two are specific cases. There we
also give a more detailed derivation, to avoid any cumbersome equations in the main body
of this paper and we explain how the label M can be interpreted. Mimicking the insertion
of Abelian flux briefly mentioned at the start of this section, we will insert a gauge field in
such a way that no additional magnetic field is created away from the origin. Furthermore, we
choose a symmetric gauge and make the simplification ∂z(δ EA)= E0. The field now looks like a
pure gauge,

δ EA = iU (λ)∇U †(λ), (42)
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for some unitary matrix U (λ), which depends on a parameter λ controlling the adiabatic process.
The evolved Hamiltonian is now easily found to be

H(λ)= U (λ)H(0)U †(λ). (43)

Since this is just a gauge transformation, we automatically meet the requirement that there is
a gap of h̄ωc separating the subspace of ground states from excited states at every point in
parameter space. Also, the eigenstates of (43) are easily found to be U (λ)|m, ε〉. This is all the
information we need to construct the Berry matrix and find the evolved state. We separately
present the results for the gauge configurations with M = 0 and M = −1.

4.2.1. The case M = 0. Our M = 0 non-Abelian field configuration reads as follows,

δAr(λ)=
−λ

1 + (λr)2
σφ,

δAφ(λ)=
−λ2r

1 + (λr)2
σz +

λ

1 + (λr)2
σr ,

(44)

where we introduced cylindrical coordinates and σr = Eσ · Eur and σφ = Eσ · Euφ. The reason why
we label this field by M = 0 is stated in appendix D and will become especially clear for
the case M = −1. Note that for r � 1/λ this field configuration does not depend on λ and
behaves as

δAφ ∼ −
1

r
σz + O(1/r 2). (45)

The structure of this field corresponds to shifting the orbital of a spin-↑ (spin-↓) particle by
+1 (−1), precisely what would happen by inserting an Abelian flux quantum, where the sign
depends on the spin of the particle. From this point onwards, we will refer to such a field as a
σz-flux quantum, to explicitly distinguish it from the insertion of a purely Abelian flux.

Our starting point is a fully polarized integer qH state, represented as a product state
|ψ(0)〉 =

⊗m f

m=0 |m ↑〉, which has the first (m f + 1) LLL orbitals filled with spin-↑ particles.
We adiabatically insert the non-Abelian flux (44) by slowly sweeping λ from λ= 0 to its final
value. Just like in the Abelian case, we gauge this evolved state back to the initial situation. In
this way, the final state lives in the same Hilbert space as the initial one, HE(0). The resulting
final state is as follows,

|ψ0(λ)〉 =

m f⊗
m=0

(um(λ)|m ↑〉 − vm(λ)|m + 1 ↓〉). (46)

The mixing coefficients {um(λ), vm(λ)} depend on both the orbital m and the adiabatic parameter
λ. They are given in (D.8) and are plotted in figure 2 as a function of m, for two values of λ.
Around the orbital number m ∼ 1/(2λ2), um(λ) and vm(λ) cross, resulting in a vanishing of the
z-component of the spin.

The asymptotic behavior of the mixing coefficients as m → ∞ can be read off from
(D.9). For large m, corresponding to a radius r � 1/λ, the adiabatic process boils down to
|m ↑〉 → |m + 1 ↓〉. This follows directly from the Berry matrix calculation, but it can be
understood simply from the conservation of Jz = L z + 1

2σz. At a large distance, the flux we insert
is essentially a σz-flux quantum (45), and it induces a charge transfer |m〉 → |m + 1〉, since all
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Figure 2. Mixing coefficients um(λ) and vm(λ) for two different values of λ.
Around m ∼ 1/(2λ2), um(λ) and vm(λ) are equal to each other.

particles are spin-↑, changing the angular momentum L z by one unit. Then the only way to
accommodate the conservation of Jz is through an accompanying spin flip | ↑〉 → | ↓〉.

We can analyze the effect of this adiabatic insertion on the product state, by looking at the
density and spin profile of the final state (46). The density is given by

ρ(r; λ)=

m f∑
m=0

r 2m e−r2/2

2mm!2π

(
um(λ)

2 + vm(λ)
2 r 2

2(m + 1)

)
(47)

and is shown in figure 3 for four different values of λ. The solid line shows the droplet before
insertion of the non-Abelian field configuration; this is a flat profile. Once we insert flux, charge
is depleted from the origin and deposited at the edge of the droplet. This is exactly one unit of
charge.

The expectation value of spin in the z-direction of these configurations is depicted in
figure 4. The state before flux insertion is the blue solid line, which has trivial spin texture. On
increasing λ, particles move one orbital out while flipping their spin. This motion starts at the
outer edge of the sample and propagates towards the center. When the final value of λ has been
reached, the particles constitute a spin texture of size 1/λ with spin-↑ at the origin and spin-↓
at the edge of the droplet. Figure 5 shows the spin field after inserting a flux parameterized by
λ= 1/3. The right picture displays the (x, y)-components of the spin field, showing that the
spins have in plane winding number 1.

The charged spin texture created by the insertion of non-Abelian flux is recognized as a
quantum Hall Skyrmion of unit electric charge, q = e, and unit topological charge, Qtop = 1.
The topological charge, given by the Pontryagin index Qtop, measures the winding of the spin
vector around the system (see, for example, [41], chapter 7) and can easily be determined by
looking at figure 5. The left figure shows that the spin in the z-direction points up in the origin
and down at the edge, so the in plane winding cannot be deformed into a trivial texture.

4.2.2. The case M = −1. Our second non-Abelian field configuration corresponds to the
M = −1 case of the generic flux presented in appendix D. We will insert it adiabatically into
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0.5

1

Figure 3. Density profile for different values of λ of a product state where the
first 150 orbitals are filled with spin-↑ particles. Before flux insertion (λ= 0),
there is a flat profile, but for finite values of λ, a quasihole of unit charge is
created around the origin.

2 4 6 8 10 12 14 16 18 20 r

1

0.5

0.5
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σz r

λ = 0
λ = 0 1
λ = 1
λ = 10

Figure 4. Expectation value of the z-component of the spin field in a product
state where the initial state has its first 150 orbitals filled with spin-↑ particles.
These profiles are after insertion of non-Abelian flux, for different values of λ.
An insertion of finite λ creates a non-trivial spin texture. The radius at which the
expectation value of σz equals zero is around r ∼ 1/λ.

the initial setting (41). The gauge potential reads

δAr(λ)=
λ

λ2 + r 2
σφ,

δAφ(λ)= −
r

λ2 + r 2
σz −

λ

λ2 + r 2
σr .

(48)
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Figure 5. Spin texture obtained after inserting non-Abelian flux with λ= 1/3.
The three components of the spin field are shown in the left picture. At the origin,
the spin points up and at the edge it points down. The figure at the right depicts
the x- and y-components of the spin field. These two figures clearly show that a
Skyrmion with in-plane winding number 1 is created.

There is a subtlety that did not arise in the previously discussed configuration and that will shed
light on why we label the different fields by an integer M . This time, δAφ(0)=

−1
r σz 6= 0, which

is the insertion of a σz-flux quantum, resulting in a shift in orbital number depending on the spin
of the particle,

|m ↑〉 → |m + 1 ↑〉, |m ↓〉 → |m − 1 ↓〉. (49)

The adiabatic process consists of two parts now. We start by adiabatically inserting a σz-flux
quantum, leading to the configuration (48) at λ= 0. After that, we slowly sweep λ so as to
reach its final value. Note that at every point of the adiabatic process we are able to find the
eigenstates of the evolved Hamiltonian. Again starting from a product state of spin-↑ particles
and gauging back to the original Hamiltonian after the adiabatic process, we obtain a final state

|ψ−1(λ)〉 =

m f⊗
m=0

(um+1(λ)|m + 1 ↑〉 − vm+1(λ)|m ↓〉), (50)

where the coefficients can be found in (D.8) and are plotted in figure 6. This time the scale at
which the spins are flipped is set by r ∼ λ.

The density of (50) is shown in figure 7, before flux insertion and for the values λ=

0, 1, 10. Again, charge is depleted from the origin, but this time the depth of the hole is largest
for λ= 0, meaning after the insertion of a σz-flux quantum at λ= 0. On increasing λ, particles
move inward while flipping their spin. This motion starts at the origin and moves out towards the
edge of the sample. The resulting spin texture is depicted in figures 8 and 9. The electric charge
(q = e) and topological charge Qtop = 1 agree with those of the Skyrmion found for M = 0.

5. Conclusion

In this paper, we have analyzed and solved the non-Abelian Landau problem on the sphere
and analyzed the charge and spin dynamics induced by the insertion of non-Abelian flux in an
otherwise Abelian background.
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Figure 6. Mixing coefficients of (50) for two different values of the adiabatic
parameter λ. The point where um(λ)= vm(λ) is around m ∼ λ2/2. The
asymptotes of the coefficients are exactly the opposite of the M = 0 case.
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λ = 10

Figure 7. The density of a product state before flux insertion and after, for
different values of λ. The flat profile depicts the initial product state. For λ= 0,
a σz-flux quantum is inserted, creating a quasihole at the origin. At finite λ, there
is still a density depletion around the origin, but it is less sharp.

We remark that, in the usual (Abelian) quantum Hall setting, quantum Hall Skyrmions
arise due to a balance between the effects of the Zeeman energy, which favors single overturned
spins, and the Coulomb interaction, which favors configurations with small spin gradients [42].
It is quite remarkable that our procedure for driving the non-interacting polarized electron gas
with non-Abelian external flux leads to the very same Skyrmion configurations.

Repeating the non-Abelian flux insertion in the background of a ν = 2 integer quantum
Hall state, with both the spin-↑ and spin-↓ LLLs completely filled, has a very different effect.
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Figure 8. Expectation value of the z-component of the spin field, in a product
state (50) for different values of λ. The radius at which the state is unpolarized is
around r ∼ λ.
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Figure 9. The left figure shows the spin field for a final state labeled by λ= 5.
At the origin, the spin is pointing down; at the edge, it points up. The right figure
shows the x- and y-components of the spin field, from which we see that this
flux insertion created a Skyrmion with in-plane winding number −1.

In this case, the bulk state cannot accommodate any spin flips and the effects of the flux insertion
are limited to the edges. Inserting non-Abelian flux through the central hole in a Corbino disc
leads to neutral Sz = ±1 excitations at both the inner and the outer edge. This situation is in
many ways reminiscent of a theoretical experiment, where a minimal amount of Abelian flux
inserted into a 2D spin quantum Hall (SQH) topological phase acts as a spin pump, resulting in
neutral Sz = ±1/2 excitations at the edges [28].

The details of the charge and spin dynamics associated with the insertion of non-Abelian
flux depend on the specific form of our gauge potentials and on the way these depend on
the sweep parameter λ. One expects that many features, in particular the topological quantum
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numbers characterizing the resulting spin textures, will be robust against changes in the detailed
shape of the external gauge potentials.
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Appendix A. Landau levels on the plane

To make this paper self-contained and also to fix notations, we recall the main results about
the Landau problem on the plane. We consider a particle of charge q and mass m confined to
a plane, under an external perpendicular magnetic field EB = B Euz (with q B > 0). The standard
choice for the vector potential EA is

EA =
B

2

−y
x
0

=
Br

2
Euφ. (A.1)

This is called the symmetric gauge because it behaves as a vector under rotations around Euz.
The only scale of the classical problem is the cyclotron frequency ωc,

ωc =
q B

m
. (A.2)

The quantum mechanical problem has an additional scale, the magnetic length lm,

lm =

√
h̄

q B
. (A.3)

The Hamiltonian reads in the symmetric gauge,

H =
1

2
ωc

((
−ilm∂x +

y

2lm

)2

+

(
−ilm∂y −

x

2lm

)2
)
. (A.4)

It is very convenient to go to complex coordinates (rescaled by the magnetic length), and to
introduce two commuting families of creation and annihilation operators,

a =
√

2
(
∂̄ +

z

4

)
, a†

=
√

2

(
−∂ +

z̄

4

)
, (A.5)

b =
√

2

(
∂ +

z̄

4

)
, b†

=
√

2
(
−∂̄ +

z

4

)
, (A.6)

where ∂ =
∂

∂z and ∂̄ =
∂

∂ z̄ . In these notations, the Hamiltonian and the angular momentum have
a very simple expression,

H = ωc

(
a†a + 1

2

)
, L z = b†b − a†a, (A.7)

from which the spectrum En = ωc(n + 1/2) follows immediately. b and b† are also the generators
of magnetic translation. Since they commute with the Hamiltonian, all of these eigenvalues
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Figure A.1. Density profile of a few orbitals in the LLL, namely m = 2, 12 and
30 LLL orbitals. The cylindrical symmetry is clearly visible.

are infinitely degenerate. The subspace of energy En = ωc(n + 1/2) is called the nth
Landau level (LL).

Denoting by n and m the eigenvalues of a†a and b†b, respectively, the Hilbert space is
spanned by the states |n,m〉 for n,m > 0. The additional quantum number m is related to the
value of the angular momentum L z|n,m〉 = (m − n)|n,m〉.

The explicit form of their wave functions is known and involves a special class of functions
called Hermite polynomials. In this appendix, we focus on the LLL n = 0: it is obtained by
acting with b† on the state |0, 0〉,

|0,m〉 =

(
b†
)m

√
m!

|0, 0〉 → 〈z|0, n〉 =
1

√
2π

zm

√
2mm!

exp(−zz̄/4). (A.8)

The orbital |m〉 has angular momentum m, and the support of the wave function (A.8) is a
ring located at distance

√
2m (in magnetic length scale) from the origin, as can be seen from

figure A.1.

Appendix B. Landau levels on the sphere

In this section of the appendix, we set q = h̄ = 1.

B.1. Field configuration: magnetic monopole

On the sphere, a uniform perpendicular magnetic field EB =
Nφ
2r2 Eur implies the presence of a

magnetic monopole at the center of the sphere, and the potential EA must have a singularity
(Dirac string) somewhere on the sphere. The gauge where the singularity lies at the south
pole, i.e.

EA =
N8

2

1 − cos(θ)

r sin(θ)
Euφ, (B.1)

and the gauge where the singularity lies at the north pole,

EA = −
N8

2

1 + cos(θ)

r sin(θ)
Euφ, (B.2)
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are related by the following unitary transformation U = eiNφφ . This operator only makes sense
on the sphere when N8 is an integer. This is Dirac’s quantization condition [36].

B.2. The Hamiltonian and the spectrum

The Hamiltonian of a particle confined to the sphere of radius r in the background of such a
magnetic monopole is

H =
E32

2mr 2
with E3= Er ∧ ( Ep − EA). (B.3)

The operators 3a have the following (gauge invariant) commutation relations,

[3a,3b] = iεabc(3c + (Er · EB)rc), (B.4)

and the generators of (magnetic) rotations have the form

EL = E3− (Er · EB)Er = EL −
N8

2
Eur . (B.5)

They generate an SU(2) symmetry,

[La, Lb] = iεabc Lc, (B.6)

and the Hamiltonian boils down to the Casimir L2. Indeed, the relation

32
= L2

−

(
N8

2

)2

(B.7)

• ensures that all La commute with the Hamiltonian;
• gives the spectrum of the Hamiltonian: 1

2mr2 (l(l + 1)− ( N8
2 )

2).

The last statement simply comes from the SU(2) algebra obeyed by the Las, which forces
the eigenvalues of L2 to be of the form l(l + 1), where l ∈

1
2N. However not of all these

values of l are possible. Using the explicit expression of EL , Wu and Yang [35] obtained the
following decomposition of the Hilbert space into irreducible representations of the SU(2)
algebra generated by EL ,

H=

(
N8

2

)
⊕

(
N8

2
+ 1

)
⊕ · · · ⊕

(
N8

2
+ n

)
⊕ · · · (B.8)

and the (Abelian) spectrum on the sphere finally reads

En =
1

2mr 2

(
n(Nφ + n + 1)+

N8

2

)
n > 0. (B.9)

Appendix C. More details of the non-Abelian field on the sphere

In this section, we derive the spectrum of the Hamiltonian

H(α)=
1

2mr 2
[Er × ( Ep − EA(α))]2, (C.1)

describing a particle confined to a sphere of radius r in the non-Abelian background potential

EA(α)= EAAb +α
Er × Eσ

r 2
, (C.2)

where EAAb stands for the U (1) potential (B.1). Note that there is a gauge transformation mapping
α → 1 −α implemented by the unitary transformation U =

Er · Eσ

r = σr .
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C.1. Rotational symmetry and decomposition of the Hilbert space

There are two sets of SU(2) generators in this problem:

• the usual (Abelian) action on the coordinates implemented by EL = Er × ( Ep − EAAb)−
N8
2

Er
r

defined in (B.5),
• the rotations in spin space generated by ES =

1
2 Eσ .

The Hamiltonian we are considering is not invariant under EL and ES separately. However, it
is a scalar under global rotations generated by EJ = EL + ES, as can be seen from the expansion in
terms of EJ ,

H(α)=
1

2mr 2

[
J 2 +

1

4
− 2α(1 −α)+ (2α− 1)

(
EJ · Eσ −

1

2
+

N8

2
U

)
+

N8

2
U

]
. (C.3)

Therefore, this Hamiltonian is block diagonal with respect to the decomposition of the Hilbert
space into irreducible representations of EJ . This decomposition follows directly from the
Abelian one (B.8),

H=

(
N8 − 1

2

)
⊕ 2

(
N8 + 1

2

)
⊕ 2

(
N8 + 3

2

)
⊕ 2

(
N8 + 5

2

)
⊕ · · · . (C.4)

C.2. The spectrum

Working in the subspace J 2
= j ( j + 1), we simply need to diagonalize the term X = (2α−

1)( EJ · Eσ −
1
2 + N8

2 U )+ N8
2 U . We first derive the following two relations,{

U,

(
EJ · Eσ −

1

2
+

N8

2
U

)}
= 0, (C.5)

(
EJ · Eσ −

1

2

)2

= EJ 2 +
1

4
. (C.6)

The first one is a consequence of the gauge equivalence U H(α)U = H(1 −α), and the second
one can be checked using the explicit form of EJ . From this, we deduce that X 2 is a constant,

X 2
= (2α− 1)2

(
EJ 2 +

1

4

)
+α(1 −α)N 2

8 (C.7)

and we obtain the following spectrum for X ,

λ±

( j) = ±

√√√√(2α− 1)2
((

j +
1

2

)2

−

(
N8

2

)2
)

+

(
N8

2

)2

. (C.8)

As can be seen in (25), for j > N8+1
2 , there are two representations of spin ( j), and from (C.5),

both eigenvalues λ±

( j) belong to the spectrum. However, there is a unique representation of
spin j =

N8−1
2 . In this irrep. U = 1 and the corresponding eigenvalue is the positive one: N8

2 .
Rewriting j = n + N8−1

2 , we obtain the following spectrum for the Hamiltonian,

E0(α)=
1

2mr 2

(
N8

2
− 2α(1 −α)

)
, (C.9)

E±

n (α)=
1

2mr 2

(
n(N8 + n)− 2α(1 −α)±

√
(2α− 1)2 n (N8 + n)+ (N8/2)

2

)
. (C.10)
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Appendix D. Generic non-Abelian field configuration

In this appendix, we present a detailed derivation of the final state obtained after an adiabatic
insertion of non-Abelian flux. This is done for the generic case, two specific examples of which
are discussed in section 4. The field configuration we insert is the following,

δAr(λ)= −

(
M +

1

2

)
2λr 2M

1 + λ2r 2+4M
σφ,

δAφ(λ)=

(
M +

1

2

)
1 − λ2r 2+4M

1 + λ2r 2+4M

1

r
σz +

(
M +

1

2

)
2λr 2M

1 + λ2r 2+4M
σr −

1

2r
σz,

(D.1)

where M can be interpreted as the number of σz-flux quanta inserted, which will be explained
below (D.3). Inserting such a field boils down to performing a gauge transformation on the
system,

UM(λ)=
1

√
1 + λ2r 2+4M

(
1 −λz̄r 2M

λzr 2M 1

)
exp(iMφσz). (D.2)

So, at every point of the adiabatic process, we know the LLL eigenstates of the evolved
Hamiltonian; they are given by

|α(λ)〉 = UM(λ)|m, ε〉. (D.3)

Before we proceed with calculating the Berry matrix, an important subtlety needs to be
considered. We wish to insert this field configuration into a background (41). But at λ= 0
and for M 6= 0, (D.1) is given by δAφ(0)= (M/r)σz 6= 0, which means that we have to start
by adiabatically inserting M σz-flux quanta, resulting in a shift in the orbitals depending on the
spin of the particle,

|m ↑〉 → |m − M ↑〉, |m ↓〉 → |m + M ↓〉. (D.4)

After the insertion of these σz-flux quanta, we slowly sweep λ from zero to some final value
resulting into (D.1). Now we can use the eigenstates (D.3) to compute the Berry connection,

Aα,β ≡ i〈α(λ)|
d

dt
|β(λ)〉 = i〈α(0)|U †

MU̇ M |β(0)〉, (D.5)

where

iU †
MU̇ M =

iλ̇

1 + λ2r 2+4M

(
0 −z̄2M+1

z2M+1 0

)
. (D.6)

The Berry connection only has non-zero elements between states of the form {UM(λ)|m ↑〉,

UM(λ)|m + 2M + 1 ↓〉}. Written in this basis, for every m, the Berry matrix is a 2 × 2 matrix,

U m
B = cos(θ (M)m (λ))I+ i sin(θ (M)m (λ))σy, (D.7)

where the angle is given by

θ (M)m (λ)=

∫
∞

0
dr arctan(λr 1+2M)

r 2+2M+2m e−r2/2

2m+M
√

2m!(m + 2M + 1)!
. (D.8)

This angle has interesting asymptotes in two different limits,

lim
m→∞

θ (M)m = arctan(λ(2m)M+1/2), (D.9)
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lim
λ→∞

θ (M)m =
π

2

0(m + M + 3/2)
√

m!(m + 2M + 1)!
. (D.10)

After the adiabatic insertion of flux, we gauge the system back to the initial one. This cycle has
the following effect on a single particle state |m ↑〉,

U †
M(λ)U

m
B (λ)UM(λ)|m ↑〉 = u(M)m (λ)|m ↑〉 − v(M)m (λ)|m + 2M + 1 ↓〉, (D.11)

where the mixing coefficients are expressed in terms of (D.8),

u(M)m (λ)≡ cos
(
θ (M)m (λ)

)
, v(M)m (λ)≡ sin

(
θ (M)m (λ)

)
. (D.12)

That the equality in (D.11) holds can be seen by inserting unity UM(λ)|m ′, ε〉〈m ′, ε|U †
M(λ)

between U †
M and U m

B . After deducing the effect of the two stages of the adiabatic process, we
can combine them to find the final state. Before we give the final state, one last remark needs to
be made. Since we want to stay in the LLL, we have to put the state on a Corbino disc, meaning
that we fill the orbitals of the initial product state with spin-↑ particles starting from some initial
orbital mi up to a final orbital m f . The two specific adiabatic flux insertions given in section 4
are actually the only two situations for which the Corbino disc is not a necessary geometry
for staying in the LLL. Starting from a product state on a Corbino disc where the orbitals are
filled with spin-↑ particles, the final state, after first adiabatically inserting M σz-flux quanta,
then cranking up the value of λ in (D.1) and finally gauging back to the initial configuration, is
given by

|ψM(λ)〉 =

m f⊗
m=mi

(
u(M)m−M(λ)|m − M ↑〉 − v

(M)
m−M(λ)|m + 1 + M ↓〉

)
. (D.13)
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