8 research outputs found
A Laboratory Procedure for Measuring the Dispersion Characteristics of Loaded Tires
It is of interest to be able to measure the wave dispersion characteristics of tires, since that information can be used to identify the types and speeds of waves propagating within them. The latter information can be used, for example, to identify the waves that preferentially radiate sound or create structure-borne disturbances that can propagate into the vehicle interior. This type of measurement is usually performed by driving an unloaded tire at one point on its treadband with a shaker, and then measuring the resulting radial vibration around the tire circumference by using a laser vibrometer. The latter spatial data can then be Fourier transformed, one frequency at-a-time, to reveal the tire’s dispersion characteristics. However, it is well known that loading a tire has a significant impact on its dynamic response, causing circumferential modes of both the carcass and interior air space to split, for example. In this paper, the design and construction of an experimental rig that allows dispersion measurements to be made on a loaded tire will be described. Here, the focus was on relatively low frequencies, so the rig was designed to be dynamically rigid below 300 Hz
Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy.
Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization
Recommended from our members
Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy.
Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization
Recommended from our members
Immunoprophylaxis against Klebsiella and Pseudomonas aeruginosa Infections
To determine if passive immunization could decrease the incidence or severity of Klebsiella and Pseudomonas aeruginosa infections, patients admitted to intensive care units of 16 Department of Veterans Affairs and Department of Defense hospitals were randomized to receive either 100 mg/ kg intravenous hyperimmune globulin (lVIG), derived from donors immunized with a 24-valent Klebsiella capsular polysaccharide plus an 8-valent P. aeruginosa O-polysaccharide-toxin A conjugate vaccine, or an albumin placebo. The overall incidence and severity of vaccine-specific Klebsiella plus Pseudomonas infections were not significantly different between the groups receiving albumin and IVIG. There was some evidence that IVIG may decrease the incidence (2.7% albumin vs. 1.2% IVIG) and severity (1.0% vs. 0.3%) of vaccine-specific Klebsiella infections, but these reductions were not statistically significant. The trial was stopped because it was statistically unlikely that IVIG would be protective against Pseudomonas infections at the dosage being used. Patients receiving IVIG had more adverse reactions (14.4% vs. 9.2%)