Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

8-26-2019

A Laboratory Procedure for Measuring the Dispersion Characteristics of Loaded Tires

Won Hong Choi Purdue University, choi123@purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Dan Haakenson Ford Motor Company

Matthew Black Ford Motor Company

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Choi, Won Hong; Bolton, J Stuart; Haakenson, Dan; and Black, Matthew, "A Laboratory Procedure for Measuring the Dispersion Characteristics of Loaded Tires" (2019). *Publications of the Ray W. Herrick Laboratories*. Paper 205. https://docs.lib.purdue.edu/herrick/205

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A LABORATORY PROCEDURE FOR MEASURING THE DISPERSION CHARACTERISTICS OF LOADED TIRES

Won Hong Choi, J. Stuart Bolton, Dan Haakenson[†], Matthew Black[†] Ray W. Herrick Laboratories, Purdue University [†]Ford Motor Company

SCHOOL OF MECHANICAL ENGINEERING AUGUST 26, 2019 Presentation available at: <u>https://docs.lib.purdue.edu/herrick/</u>

Content

- 1. Background and Objective
- 2. Design of Test Rig
- 3. Modal Analysis
- 4. Impact Hammer Test
- 5. Experiment with Laser Doppler Vibrometer
- 6. Conclusion

Research background (1/2)

- Tire/road noise is becoming more significant with the advent of Electric Vehicles (EVs)
- Acoustic cavity mode usually happens around at 200 Hz depending on the size of tire and inflation
- It has been identified as a key contributor to cabin noise and transmitted force in a suspension system

Source : Sakata and et al. (1990) [1]

Research background (2/2)

- Deformed tire can break geometrical symmetry, which produce two acoustic modes [2]
- Need to identify 'Frequency-split' of the cavity mode for deformed tires experimentally

Source : Ch. Bederna and E.-U. Saemann (2009) [4]

4/30

Research objective

 Test rig should be designed to observe the dispersion behavior of deformed tires when measured with laser doppler vibrometer (LDV): i.e., type and speeds of waves in the coupled, stationary tires

Design requirements

Avoid structural resonance between 200 and 300 Hz
 Capability of deforming on tires with a specific load
 Economical, compact and robust structure

Conventional test rig

Conceptual design

 Horizontally positioned tire is beneficial since higher natural frequency comes from short vertical support that can be achieved with a light-weight structure

6/30

Design of Test Rig

Physical overview

Test rig consists of testbed, loading device, and shaker support

Design of Test Rig

Testbed

- Mounted on commercial steel floor with T slot
- Adapter is compatible with two different bolt radii

Loading device

- Equipped with a slide table to adjust height
- Impose deformation on the tire using screw jack and patch 61.2 kg (carbon steel & AI), Unit [mm]

Design of Test Rig

Shaker support

- Compatible with mini shaker (B&K 4810)
- Adjustable height by incorporating a long slot

Verification for cantilever beam

- Preliminary study on reliability of simulation software, Abaqus 2018
- Simulation results conform to the analytical calculation [5]

1(L)×0.1(W)×0.1(H), steel

Boundary and load

- Tie condition is applied for welding and assembly with fixed mounting
- Tire is modeled as a combination of point mass, spring, and static force to simulate deflection

Modal Analysis

Simulation results

Modal Analysis

Simulation results

Loading device & Shaker support

14/30

Test setup

- To confirm the results of numerical modal analysis
- Three-axis accelerometer is attached to a point where coherence factor is above 0.8

(a) without tire

(b) with tire under loaded

(refer to Appendix to see lists of measurement devices)

Test setup

- To confirm the results of numerical modal analysis
- Three-axis accelerometer is attached to a point where coherence factor is above 0.8

(c) shaker in support

(refer to Appendix to see lists of measurement devices)

Results for testbed

• First natural frequency beyond 300 Hz for both cases, which conforms to numerical results

17/30

Results for loading device and shaker

• First natural frequency beyond 300 Hz for both cases, not perfectly matching prediction

(c) Loading device

(d) Shaker support

18/30

Summary

- Testbed has good agreement between numerical and experimental first natural frequency
- Loading device has a small discrepancy due to difficulty in fine modeling of moving slide and screw jack
- Shaker support matches reasonably well even though shaker modeling is challenging

Description	FEM Mode	Test Mode	
Testbed	900 Hz	806 Hz	
Testbed with assembly	312 Hz	352 Hz	
Loading device	433 Hz	569 Hz	
Shaker support	1670 Hz	2094 Hz	

Schematic diagram

• Surface vibration on the sidewall under load can be detected from the top side

LDV on movable frame

Test Apparatus

- Mobility data can be obtained by measuring surface velocity and force for the deformed tire
- Static force (7505 N) is maintained through monitoring a load cell

Test Apparatus

- Mobility data can be obtained by measuring surface velocity and force for the deformed tire
- Static force (7505 N) is maintained through monitoring a load cell

Example of measurement (20" tire)

Dispersion curve is achieved by applying Fourier transform to spatial mobility

Conclusion

- Compact and cost efficient test rig was designed to measure dispersion characteristics of loaded tires
 - Allows height adjustment with force loading device
- Dynamically rigid behavior was achieved beyond 300 Hz, which was validated by both modal analysis and impact hammer test
 - More reliable to investigate frequency split in the first acoustic mode between 200 and 300 Hz
- Laser Doppler Vibrometer was used to observe dispersion characteristics of loaded tires combined with the test rig
 - Validated usefulness of the new test rig, generating meaningful results for the deformed tire
- Next steps are to quantify frequency split as function of load and deformation

Acknowledgement

- Ford Motor Company Financial support / Tire & wheel sample provider
- Matthew Black Main coordinator of this project
- Dan Haakenson Technical advice and industrial feedback

San Diego, California NOISE-CON 2019 2019 August 26-30

THANKYOU

Won Hong Choi choi124@purdue.edu Ray W. Herrick Laboratories J. Stuart Bolton bolton@purdue.edu Ray W. Herrick Laboratories

WE ARE PURDUE. WHAT WE MAKE MOVES THE WORLD FORWARD.

EA/EOU

References

- [1] Sakata, T., Morimura, H. and Hideyuki, I. (1990) "Effect of tire cavity resonance on vehicle road noise," *Tire Science and Technology*, Vol. **18(2)**, pp.68–79.
- [2] Gunda, R., Gau, S. and Dohrmann, C. (2000) "Analytical Model of Tire Cavity Resonance and Coupled Tire/Cavity Modal Model," *Tire Science and Technology*, Vol. **30(1)**, pp.33–49.
- [3] Yamauchi, H. and Akiyoshi, Y. (2002) "Theoretical analysis of tire acoustic cavity noise and proposal of improvement technique, "*JSAE Review*, Vol. **23**, pp.89–94.
- [4] Bederna, C. and Saemann, E. (2009) " Contributions to a better understanding of tire cavity noise, " NAG/DAGA 2009, Rotterdam.
- [5] B.A. Zai, and et al. (2011), "Structural Optimization of Cantilever Beam in Conjunction with Dynamic Analysis", *Journal of the Korean Institute of Gas,* Vol. **15(5)**, pp.31-36.

Natural frequency of cantilever beam

1(L)×0.1(W)×0.1(H), steel

Property	Value	Note
Young's modulus, E	210 GPa	
Moment of inertia, I	$8.33 \cdot 10^{-6} m^4$	$bh^3/_{12}$
Density, $ ho$	8000 kg/m ³	

$$f_1 = \frac{1.875^2}{2\pi L^2} \sqrt{\frac{EI}{\rho A}} = \frac{1.875^2}{2\pi (1\,m)^2} \sqrt{\frac{2 \cdot 10^{11} \, N/m^2 \cdot 8.33 \cdot 10^{-6} \, m^4}{8000 \, kg/m^3 \cdot 0.01m^2}} = 80 \text{ Hz}$$

Impact Hammer Test

LDV Test

Туре	Brand	Model	Remark
		3560-B-130	Frequency resolution, 1 Hz
DAQ	Dan		Five exponential averaging
Impact Hammer	PCB	086C03	Uniform window
Accelerometer	B&K	4506	Hanning window
Туре	Brand	Model	Remark
	LDV Polytec P	DSV 400	Frequency resolution, 0.156 Hz
		F 3 V-400	Five exponential averaging
Shaker	B&K	4810	White noise
Force transducer	PCB	208A3	Hanning window
Amplifier	QSC	1080	Max. force, 5 N
Analog filter	Wavetek	852	40 Hz ~ 1 kHz
Load Cell	Futek	LCF450	Max. force 8,829 N

Configuration of T slot

