2,460 research outputs found

    Classical versus Quantum Time Evolution of Densities at Limited Phase-Space Resolution

    Full text link
    We study the interrelations between the classical (Frobenius-Perron) and the quantum (Husimi) propagator for phase-space (quasi-)probability densities in a Hamiltonian system displaying a mix of regular and chaotic behavior. We focus on common resonances of these operators which we determine by blurring phase-space resolution. We demonstrate that classical and quantum time evolution look alike if observed with a resolution much coarser than a Planck cell and explain how this similarity arises for the propagators as well as their spectra. The indistinguishability of blurred quantum and classical evolution implies that classical resonances can conveniently be determined from quantum mechanics and in turn become effective for decay rates of quantum correlations.Comment: 10 pages, 3 figure

    Stringent Numerical Test of the Poisson Distribution for Finite Quantum Integrable Hamiltonians

    Get PDF
    Using a new class of exactly solvable models based on the pairing interaction, we show that it is possible to construct integrable Hamiltonians with a Wigner distribution of nearest neighbor level spacings. However, these Hamiltonians involve many-body interactions and the addition of a small integrable perturbation very quickly leads the system to a Poisson distribution. Besides this exceptional cases, we show that the accumulated distribution of an ensemble of random integrable two-body pairing hamiltonians is in perfect agreement with the Poisson limit. These numerical results for quantum integrable Hamiltonians provide a further empirical confirmation to the work of the Berry and Tabor in the semiclassical limit.Comment: 5 pages, 4 figures, LaTeX (RevTeX 4) Content changed, References added Accepted for publication in PR

    Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

    Full text link
    We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops. For a typical matrix the time dependence of the form factor looks erratic; only after a local time average over a suitably large time window does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and large time window the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma

    Decoherence induced by an interacting spin environment in the transition from integrability to chaos

    Get PDF
    We investigate the decoherence properties of a central system composed of two spins 1/2 in contact with a spin bath. The dynamical regime of the bath ranges from a fully integrable integrable limit to complete chaoticity. We show that the dynamical regime of the bath determines the efficiency of the decoherence process. For perturbative regimes, the integrable limit provides stronger decoherence, while in the strong coupling regime the chaotic limit becomes more efficient. We also show that the decoherence time behaves in a similar way. On the contrary, the rate of decay of magnitudes like linear entropy or fidelity does not depend on the dynamical regime of the bath. We interpret the latter results as due to a comparable complexity of the Hamiltonian for both the integrable and the fully chaotic limits.Comment: Submitted to Phys. Rev.

    Fidelity recovery in chaotic systems and the Debye-Waller factor

    Full text link
    Using supersymmetry calculations and random matrix simulations, we studied the decay of the average of the fidelity amplitude f_epsilon(tau)=<psi(0)| exp(2 pi i H_epsilon tau) exp(-2 pi i H_0 tau) |psi(0)>, where H_epsilon differs from H_0 by a slight perturbation characterized by the parameter epsilon. For strong perturbations a recovery of f_epsilon(tau) at the Heisenberg time tau=1 is found. It is most pronounced for the Gaussian symplectic ensemble, and least for the Gaussian orthogonal one. Using Dyson's Brownian motion model for an eigenvalue crystal, the recovery is interpreted in terms of a spectral analogue of the Debye-Waller factor known from solid state physics, describing the decrease of X-ray and neutron diffraction peaks with temperature due to lattice vibrations.Comment: revised version (major changes), 4 pages, 4 figure

    Understanding the effect of seams on the aerodynamics of an association football

    Get PDF
    The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005

    The effect of short ray trajectories on the scattering statistics of wave chaotic systems

    Full text link
    In many situations, the statistical properties of wave systems with chaotic classical limits are well-described by random matrix theory. However, applications of random matrix theory to scattering problems require introduction of system specific information into the statistical model, such as the introduction of the average scattering matrix in the Poisson kernel. Here it is shown that the average impedance matrix, which also characterizes the system-specific properties, can be expressed in terms of classical trajectories that travel between ports and thus can be calculated semiclassically. Theoretical results are compared with numerical solutions for a model wave-chaotic system

    Multifractal eigenstates of quantum chaos and the Thue-Morse sequence

    Full text link
    We analyze certain eigenstates of the quantum baker's map and demonstrate, using the Walsh-Hadamard transform, the emergence of the ubiquitous Thue-Morse sequence, a simple sequence that is at the border between quasi-periodicity and chaos, and hence is a good paradigm for quantum chaotic states. We show a family of states that are also simply related to Thue-Morse sequence, and are strongly scarred by short periodic orbits and their homoclinic excursions. We give approximate expressions for these states and provide evidence that these and other generic states are multifractal.Comment: Substantially modified from the original, worth a second download. To appear in Phys. Rev. E as a Rapid Communicatio

    Exact Coupling Coefficient Distribution in the Doorway Mechanism

    Full text link
    In many--body and other systems, the physics situation often allows one to interpret certain, distinct states by means of a simple picture. In this interpretation, the distinct states are not eigenstates of the full Hamiltonian. Hence, there is an interaction which makes the distinct states act as doorways into background states which are modeled statistically. The crucial quantities are the overlaps between the eigenstates of the full Hamiltonian and the doorway states, that is, the coupling coefficients occuring in the expansion of true eigenstates in the simple model basis. Recently, the distribution of the maximum coupling coefficients was introduced as a new, highly sensitive statistical observable. In the particularly important regime of weak interactions, this distribution is very well approximated by the fidelity distribution, defined as the distribution of the overlap between the doorway states with interaction and without interaction. Using a random matrix model, we calculate the latter distribution exactly for regular and chaotic background states in the cases of preserved and fully broken time--reversal invariance. We also perform numerical simulations and find excellent agreement with our analytical results.Comment: 22 pages, 4 figure

    On the Convergence to Ergodic Behaviour of Quantum Wave Functions

    Full text link
    We study the decrease of fluctuations of diagonal matrix elements of observables and of Husimi densities of quantum mechanical wave functions around their mean value upon approaching the semi-classical regime (0\hbar \rightarrow 0). The model studied is a spin (SU(2)) one in a classically strongly chaotic regime. We show that the fluctuations are Gaussian distributed, with a width σ2\sigma^2 decreasing as the square root of Planck's constant. This is consistent with Random Matrix Theory (RMT) predictions, and previous studies on these fluctuations. We further study the width of the probability distribution of \hbar-dependent fluctuations and compare it to the Gaussian Orthogonal Ensemble (GOE) of RMT.Comment: 13 pages Latex, 5 figure
    corecore