16 research outputs found

    Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials

    Get PDF
    Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary Ekin-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the K¯ and K¯′ points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2pz orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract Ekin-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond

    Growth and Evolution of TCNQ and K Coadsorption Phases on Ag(111)

    No full text
    Alkali-doping is a very efficient way of tuning the electronic properties of active molecular layers in (opto-)electronic devices based on organic semiconductors. In this context, we report on the phase formation and evolution of charge transfer salts formed by 7,7,8,8-tetracyanoquinodimethane (TCNQ) in coadsorption with potassium on a Ag(111) surface. Based on an in-situ study using low energy electron microscopy and diffraction we identify the structural properties of four phases with different stoichiometries, and follow their growth and inter-phase transitions. We label these four phases α to δ, with increasing K content, the last two of which (γ and δ-phases) have not been previously reported. During TCNQ deposition on a K-precovered Ag(111) surface we find a superior stability of δ phase islands compared to the γ phase; continued TCNQ deposition leads to direct transition from the δ to the β-phase when the K:TCNQ ratio corresponding to this phase regime is reached, with no intermediate γ-phase formation. When, instead, K is deposited on a surface precovered with large islands of the low density commensurate (LDC) TCNQ phase that are surrounded by a TCNQ 2D-gas, we observe two different scenarios: On the one hand, in the 2D-gas phase regions, very small α-phase islands are formed (close to the resolution limit of the microscope, 10-15 nm), which transform to β-phase islands of similar size with increasing K deposition. On the other hand, the large (micrometer-sized) TCNQ islands transform directly to similarly large single-domain β-phase islands, the formation of the intermediate α-phase being suppressed. This frustration of the LDC-to-α transition can be lifted by performing the experiment at elevated temperature. In this sense, the morphology of the pure TCNQ submonolayer is conserved during phase transitions

    Growth, domain structure, and atomic adsorption sites of hBN on the Ni(111) surface

    No full text
    One of the most important functionalities of the atomically thin insulator hexagonal boron nitride (hBN) is its ability to chemically and electronically decouple functional materials from highly reactive surfaces. It is therefore of utmost importance to uncover its structural properties on surfaces on an atomic and mesoscopic length scale. In this paper, we quantify the relative coverages of structurally different domains of a hBN layer on the Ni(111) surface using low-energy electron microscopy and the normal incidence x-ray standing wave technique. We find that hBN nucleates on defect sites of the Ni(111) surface and predominantly grows in two epitaxial domains that are rotated by 60∘ with respect to each other. The two domains reveal identical adsorption heights, indicating a similar chemical interaction strength with the Ni(111) surface. The different azimuthal orientations of these domains originate from different adsorption sites of N and B. We demonstrate that the majority (≈70%) of hBN domains exhibit a (N,B)=(top,fcc) adsorption site configuration while the minority (≈30%) show a (N,B)=(top,hcp) configuration. Our study hence underlines the crucial role of the atomic adsorption configuration in the mesoscopic domain structures of in situ fabricated two-dimensional materials on highly reactive surfac

    Controlling the electronic and physical coupling on dielectric thin films

    No full text
    Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films

    Controlling the electronic and physical coupling on dielectric thin films

    No full text
    Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films

    Momentum space imaging of σ orbitals for chemical analysi

    No full text
    Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with {\pi}-character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, {\sigma}-orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range, and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction
    corecore