58 research outputs found
The quantum structure of spacetime at the Planck scale and quantum fields
We propose uncertainty relations for the different coordinates of spacetime
events, motivated by Heisenberg's principle and by Einstein's theory of
classical gravity. A model of Quantum Spacetime is then discussed where the
commutation relations exactly implement our uncertainty relations.
We outline the definition of free fields and interactions over QST and take
the first steps to adapting the usual perturbation theory. The quantum nature
of the underlying spacetime replaces a local interaction by a specific nonlocal
effective interaction in the ordinary Minkowski space. A detailed study of
interacting QFT and of the smoothing of ultraviolet divergences is deferred to
a subsequent paper.
In the classical limit where the Planck length goes to zero, our Quantum
Spacetime reduces to the ordinary Minkowski space times a two component space
whose components are homeomorphic to the tangent bundle TS^2 of the 2-sphere.
The relations with Connes' theory of the standard model will be studied
elsewhere.Comment: TeX, 37 pages. Since recent and forthcoming articles (hep-th/0105251,
hep-th/0201222, hep-th/0301100) are based on this paper, we thought it would
be convenient for the readers to have it available on the we
Construction of Field Algebras with Quantum Symmetry from Local Observables
It has been discussed earlier that ( weak quasi-) quantum groups allow for
conventional interpretation as internal symmetries in local quantum theory.
From general arguments and explicit examples their consistency with (braid-)
statistics and locality was established. This work addresses to the
reconstruction of quantum symmetries and algebras of field operators. For every
algebra \A of observables satisfying certain standard assumptions, an
appropriate quantum symmetry is found. Field operators are obtained which act
on a positive definite Hilbert space of states and transform covariantly under
the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation
relations, these fields are demonstrated to obey local braid relation.Comment: 50 pages, HUTMP 93-B33
Glimmers of a pre-geometric perspective
Space-time measurements and gravitational experiments are made by using
objects, matter fields or particles and their mutual relationships. As a
consequence, any operationally meaningful assertion about space-time is in fact
an assertion about the degrees of freedom of the matter (\emph{i.e} non
gravitational) fields; those, say for definiteness, of the Standard Model of
particle physics. As for any quantum theory, the dynamics of the matter fields
can be described in terms of a unitary evolution of a state vector in a Hilbert
space. By writing the Hilbert space as a generic tensor product of "subsystems"
we analyse the evolution of a state vector on an information theoretical basis
and attempt to recover the usual space-time relations from the information
exchanges between these subsystems. We consider generic interacting second
quantized models with a finite number of fermionic degrees of freedom and
characterize on physical grounds the tensor product structure associated with
the class of "localized systems" and therefore with "position". We find that in
the case of free theories no space-time relation is operationally definable. On
the contrary, by applying the same procedure to the simple interacting model of
a one-dimensional Heisenberg spin chain we recover the tensor product structure
usually associated with "position". Finally, we discuss the possible role of
gravity in this framework.Comment: 30 page
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
Black Hole Thermodynamics and Statistical Mechanics
We have known for more than thirty years that black holes behave as
thermodynamic systems, radiating as black bodies with characteristic
temperatures and entropies. This behavior is not only interesting in its own
right; it could also, through a statistical mechanical description, cast light
on some of the deep problems of quantizing gravity. In these lectures, I review
what we currently know about black hole thermodynamics and statistical
mechanics, suggest a rather speculative "universal" characterization of the
underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean
Summer School on Black Hole
Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at √s = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry ALL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at √s=200 GeV. The cross section data cover transverse momenta
Two-particle correlations on transverse momentum and momentum dissipation in Au-Au collisions at sqrt(sNN) = 130 GeV
Measurements of two-particle correlations on transverse momentum pt for Au–Au collisions at GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with 0.15 ≤ pt ≤ 2 GeV/c and pseudorapidity |η| ≤ 1.3. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-pt fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large pt values while negative correlations occur for pairs in which one particle has large pt and the other has much lower pt. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower pt
The energy dependence of p\u3csub\u3et\u3c/sub\u3e angular correlations inferred from mean-p\u3csub\u3et\u3c/sub\u3e fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of pt angular correlations inferred from event-wise mean transverse momentum pt fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies , 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. pt angular correlation structure suggests that the principal source of pt correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with from the onset of observable jet-related pt fluctuations near 10 GeV
Direct Observation of Dijets in Central Au+Au Collisions at √sNN=200 GeV
The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (pT) charged hadrons in Au+Au collisions at higher pT than reported previously. As pT is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter
- …