58 research outputs found

    The quantum structure of spacetime at the Planck scale and quantum fields

    Full text link
    We propose uncertainty relations for the different coordinates of spacetime events, motivated by Heisenberg's principle and by Einstein's theory of classical gravity. A model of Quantum Spacetime is then discussed where the commutation relations exactly implement our uncertainty relations. We outline the definition of free fields and interactions over QST and take the first steps to adapting the usual perturbation theory. The quantum nature of the underlying spacetime replaces a local interaction by a specific nonlocal effective interaction in the ordinary Minkowski space. A detailed study of interacting QFT and of the smoothing of ultraviolet divergences is deferred to a subsequent paper. In the classical limit where the Planck length goes to zero, our Quantum Spacetime reduces to the ordinary Minkowski space times a two component space whose components are homeomorphic to the tangent bundle TS^2 of the 2-sphere. The relations with Connes' theory of the standard model will be studied elsewhere.Comment: TeX, 37 pages. Since recent and forthcoming articles (hep-th/0105251, hep-th/0201222, hep-th/0301100) are based on this paper, we thought it would be convenient for the readers to have it available on the we

    Construction of Field Algebras with Quantum Symmetry from Local Observables

    Full text link
    It has been discussed earlier that ( weak quasi-) quantum groups allow for conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses to the reconstruction of quantum symmetries and algebras of field operators. For every algebra \A of observables satisfying certain standard assumptions, an appropriate quantum symmetry is found. Field operators are obtained which act on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation relations, these fields are demonstrated to obey local braid relation.Comment: 50 pages, HUTMP 93-B33

    Glimmers of a pre-geometric perspective

    Full text link
    Space-time measurements and gravitational experiments are made by using objects, matter fields or particles and their mutual relationships. As a consequence, any operationally meaningful assertion about space-time is in fact an assertion about the degrees of freedom of the matter (\emph{i.e} non gravitational) fields; those, say for definiteness, of the Standard Model of particle physics. As for any quantum theory, the dynamics of the matter fields can be described in terms of a unitary evolution of a state vector in a Hilbert space. By writing the Hilbert space as a generic tensor product of "subsystems" we analyse the evolution of a state vector on an information theoretical basis and attempt to recover the usual space-time relations from the information exchanges between these subsystems. We consider generic interacting second quantized models with a finite number of fermionic degrees of freedom and characterize on physical grounds the tensor product structure associated with the class of "localized systems" and therefore with "position". We find that in the case of free theories no space-time relation is operationally definable. On the contrary, by applying the same procedure to the simple interacting model of a one-dimensional Heisenberg spin chain we recover the tensor product structure usually associated with "position". Finally, we discuss the possible role of gravity in this framework.Comment: 30 page

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure

    Black Hole Thermodynamics and Statistical Mechanics

    Full text link
    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean Summer School on Black Hole

    Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at √s = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry ALL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at √s=200  GeV. The cross section data cover transverse momenta

    Two-particle correlations on transverse momentum and momentum dissipation in Au-Au collisions at sqrt(sNN) = 130 GeV

    Get PDF
    Measurements of two-particle correlations on transverse momentum pt for Au–Au collisions at GeV are presented. Significant large-momentum-scale correlations are observed for charged primary hadrons with 0.15 ≤ pt ≤ 2 GeV/c and pseudorapidity |η| ≤ 1.3. Such correlations were not observed in a similar study at lower energy and are not predicted by theoretical collision models. Their direct relation to mean-pt fluctuations measured in the same angular acceptance is demonstrated. Positive correlations are observed for pairs of particles which have large pt values while negative correlations occur for pairs in which one particle has large pt and the other has much lower pt. The correlation amplitudes per final state particle increase with collision centrality. The observed correlations are consistent with a scenario in which the transverse momentum of hadrons associated with initial-stage semi-hard parton scattering is dissipated by the medium to lower pt

    The energy dependence of p\u3csub\u3et\u3c/sub\u3e angular correlations inferred from mean-p\u3csub\u3et\u3c/sub\u3e fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of pt angular correlations inferred from event-wise mean transverse momentum pt fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies , 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. pt angular correlation structure suggests that the principal source of pt correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with from the onset of observable jet-related pt fluctuations near 10 GeV

    Direct Observation of Dijets in Central Au+Au Collisions at √sNN=200  GeV

    Get PDF
    The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (pT) charged hadrons in Au+Au collisions at higher pT than reported previously. As pT is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter
    corecore