2,877 research outputs found
La legitimidad de la metafĂsica: el legado de Kant a Peirce, y el de Peirce a la filosofĂa de nuestros dĂas
Peirce’s response to the anti-metaphysical positivism of his day
draws on Kant’s response to Hume, but moves beyond it, being
thus a valuable resource, especially in our own post-Logical Positivist
era. (Part of) Kant’s legacy to Peirce was a lasting conviction
that metaphysics need not be the hopelessly "airy science" Hume
had pooh-poohed, but could and should become a legitimate and
valuable area of investigation. (Part of) Peirce's legacy to philosophy
today is a distinctively plausible post-Kantian reconstruction
of how this might be achieved
IIA String Theory on Calabi-Yau Fourfolds with Background Fluxes
Looking for string vacua with fixed moduli, we study compactifications of type IIA string theory on Calabi-Yau fourfolds in the presence of generic Ramond-Ramond fields. We explicitly derive the (super)potential induced by Ramond-Ramond fluxes performing a Kaluza-Klein reduction of the ten-dimensional effective action. This can be conveniently achieved in a formulation of the massive type IIA supergravity where all Ramond-Ramond fields appear in a democratic way. The result agrees with the general formula for the superpotential written in terms of calibrations. We further notice that for generic Ramond-Ramond fluxes all geometric moduli are stabilized and one finds non-supersymmetric vacua at positive values of the scalar potential
Laboratory Rearing of \u3ci\u3eLycaeides Melissa Samuelis\u3c/i\u3e (Lepidoptera: Lycaenidae), An Endangered Butterfly in Michigan
The Karner blue butterfly (Lycaeides melissa samuelis) is listed as a federally endangered species in the United States. It occurs in oak savanna and pine barren habitats from eastern Minnesota to New Hampshire. In 1994, we successfully reared Karner blue larvae under controlled laboratory conditions for experimental purposes, and report on those rearing methods here. We collected 20 female Karner blue adults of the spring generation from two areas in Michigan, and housed them in cages in an environmental chamber at 240 -26°C for 5 days. The female butterflies produced 154 eggs, of which 72 hatched in an average of 4.5 days, and 68 first instars survived. Eggs, larvae and pupae were kept in a growth chamber at 24°C. Developmental time from egg to adult averaged 26 days; the average duration of each instar ranged from 3 to 4 days, and the average pupal duration was 8 days. Thirty three lab- oratory-reared Karner blue larvae successfully completed the 4 instars, and were released as adults into maternal collection sites. Laboratory rearing may be a viable means of providing Karner blue individuals for reintroduction into areas where the species is extirpated, for supplementation of small populations, or for research. Ultimately, such methods may become an integral part in the recovery of this and other rare invertebrate species
Exploratory Survey for the Emerald Ash Borer, \u3ci\u3eAgrilus Planipennis\u3c/i\u3e (Coleoptera: Buprestidae), and Its Natural Enemies in China
An exploratory survey for the emerald ash borer, Agrilus planipennis, and its natural enemies was conducted in China during October and November 2003. We examined 29 field plots in six provinces. We visually inspected living Fraxinus chinensis, F. mandshurica, F. pennsylvanica, F. rhynchophylla, and F. velutina then peeled off the bark in search of A. planipennis and associated natural enemies. We found active A. planipennis infestations in nine of the 29 field plots, including plots in the provinces of Hebei, Heilongjiang, Jilin, Liaoning, and the provincial level city of Tianjin. Signs of past A. planipennis infestations were found in five of the 20 plots where no active infestations were present. The distribution of A. planipennis was patchy within the forest, and larval densities varied greatly among trees and at different heights within the same tree. Agrilus planipennis densities ranged from 0 to 284 larvae/m2 of bark surface for 1-m log sections. The Nearctic ash species, F. pennsylvanica and F. velutina, planted in China were apparently more susceptible to A. planipennis attack than were the native Chinese ash species. Similarly, ash trees growing along streets or in plantations or city parks were more susceptible to A. planipennis infestation compared with trees in natural forests. We identified two species of natural enemies attacking A. planipennis during this survey. In Changchun City, Jilin Province and Guangang District, Tianjin City, we found a previously reported but undescribed species of Spathius sp. (Braconidae) parasitizing an average of 6.3% A. planipennis larvae in individual trees, ranging from 0 to 50%. In Changchun City, Jilin Province and in Benxi County, Liaoning Province, we discovered a previously unknown gregarious endoparasitoid of A. planipennis larvae, Tetrastichus nov. sp. (Eulophidae), with a total parasitism rate of 6.6% in individual trees, ranging from 0 to 50%. We discussed the potential role of natural enemies in the management of A. planipennis in North America
Parity detection and entanglement with a Mach-Zehnder interferometer
A parity meter projects the state of two qubits onto two subspaces with
different parities, the states in each parity class being indistinguishable. It
has application in quantum information for its entanglement properties. In our
work we consider the electronic Mach-Zehnder interferometer (MZI) coupled
capacitively to two double quantum dots (DQDs), one on each arm of the MZI.
These charge qubits couple linearly to the charge in the arms of the MZI. A key
advantage of an MZI is that the qubits are well separated in distance so that
mutual interaction between them is avoided. Assuming equal coupling between
both DQDs and the arms and the same bias for each DQD, this setup usually
detects three different currents, one for the odd states and two for each even
state. Controlling the magnetic flux of the MZI, we can operate the MZI as a
parity meter: only two currents are measured at the output, one for each parity
class. In this configuration, the MZI acts as an ideal detector, its Heisenberg
efficiency being maximal. For a class of initial states, the initially
unentangled DQDs become entangled through the parity measurement process with
probability one.Comment: 9 pages, 2 figure
Nernst branes with Lifshitz asymptotics in N=2 gauged supergravity
We discuss two classes of non-supersymmetric interpolating solutions in N = 2, D = 4 gauged supergravity, that flow from either a z = 2 Lifshitz geometry or a conformal AdS background to the near-horizon geometry of a Nernst brane. We obtain these solutions by constructing a z = 2 supersymmetric Lifshitz solution in the STU model from a first-order rewriting of the action, then lifting it up to a five-dimensional background and subsequently modifying this five-dimensional solution by a two-parameter family of deformations. Under reduction, these give four-dimensional non-supersymmetric Nernst brane solutions. This is a step towards resolving the Lifshitz tidal force singularity in the context of N = 2 gauged supergravity and suggests an approach to encoding the Nernst brane in terms of the Schrodinger symmetry group of the holographically dual field theory
Susceptibility of the Endangered Karner Blue Butterfly (Lepidoptera: Lycaenidae) to \u3ci\u3eBacillus Thuringiensis\u3c/i\u3e Var. \u3ci\u3eKurstaki\u3c/i\u3e Used for Gypsy Moth Suppression in Michigan
We investigated the phenological and physiological susceptibility of the endangered Karner blue butterfly (Lycaeides melissa samuelis) to Bacillus thuringiensis var. kurstaki (Bt), a product widely used for gypsy moth (Lymantria dispar) suppression in Michigan and other infested states. We monitored phenology of the bivoltine Karner blue in two regions of Michigan from 1993 to 1995 to determine if larval stages overlapped temporally with the period of Bt application for gypsy moth suppression. Karner blue larvae of the spring generation were found during the period that Bt was applied in nearby areas in 1993 only. However, spring-generation adults or newly laid eggs were observed up to 11 days before applications in 1994 and 1995. Since Karner blue eggs develop within one week, summer-generation larvae were most likely present during or shortly after 1994 and 1995 Bt application periods. These larvae would have been at risk, assuming Bt persistence of 4 to 6 days.
Physiological susceptibility of Karner blue larvae to Bt was determined in a laboratory bioassay. Larvae were reared on wild lupine (Lupinus perennis) foliage that was untreated, or sprayed with Bt formulations at rates of 30-37 or 90 BIU/ha. A similar bioassay with second instar gypsy moth larvae on similarly treated white oak (Quercus alba) foliage was conducted concurrently. Karner blue survival was 100%, 27% and 14% on control, low and high Bt treatments, respectively. Early and late Karner blue instars were equally susceptible to Bt. Survival of gypsy moth was 80%, 33% and 5% on control, low and high Bt treatments, respectively, and did not differ significantly from Karner blue survival. We conclude that Karner blue is both phenologically and physiologically susceptible to Bt used for gypsy moth suppression, although the larval generation at risk and extent of phenological overlap may vary from year to year
Nonlinear Magnetohydrodynamics from Gravity
We apply the recently established connection between nonlinear fluid dynamics
and AdS gravity to the case of the dyonic black brane in AdS_4. This yields the
equations of fluid dynamics for a 2+1 dimensional charged fluid in a background
magnetic field. We construct the gravity solution to second order in the
derivative expansion. From this we find the fluid dynamical stress tensor and
charge current to second and third order in derivatives respectively, along
with values for the associated transport coefficients.Comment: 20 pages. v3: Added section 2.3 on comparison to other approaches and
definition of viscosit
Calabi-Yau Fourfolds with Flux and Supersymmetry Breaking
In Calabi-Yau fourfold compactifications of M-theory with flux, we
investigate the possibility of partial supersymmetry breaking in the
three-dimensional effective theory. To this end, we place the effective theory
in the framework of general N=2 gauged supergravities, in the special case
where only translational symmetries are gauged. This allows us to extract
supersymmetry-breaking conditions, and interpret them as conditions on the
4-form flux and Calabi-Yau geometry. For N=2 unbroken supersymmetry in three
dimensions we recover previously known results, and we find a new condition for
breaking supersymmetry from N=2 to N=1, i.e. from four to two supercharges. An
example of a Calabi-Yau hypersurface in a toric variety that satisfies this
condition is provided.Comment: 26 page
S-duality in AdS/CFT magnetohydrodynamics
We study the nonlinear hydrodynamics of a 2+1 dimensional charged conformal
fluid subject to slowly varying external electric and magnetic fields.
Following recent work on deriving nonlinear hydrodynamics from gravity, we
demonstrate how long wavelength perturbations of the AdS dyonic black brane
solution of 4D supergravity are governed by equations equivalent to fluid
dynamics equations in the boundary theory. We investigate the implications of
-duality for our system, and derive restrictions imposed on the transport
coefficients of a generic fluid invariant under the S operation. We also expand
on our earlier work and determine a new set of previously undetermined
transport coefficients for the conformal fluid with an AdS gravity dual. Quite
surprisingly, we discover that half of the transport coefficients allowed by
symmetry vanish in the holographic fluid at linear order in the hydrodynamic
expansion.Comment: 25 page
- …