2 research outputs found

    The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases

    Get PDF
    Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes

    Molecular keys to the Janthinobacterium and Duganella spp. interaction with the plant pathogen Fusarium graminearum

    No full text
    Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen
    corecore