39,673 research outputs found
Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium
We present the results of extensive computer simulations performed on
solutions of monodisperse charged rod-like polyelectrolytes in the presence of
trivalent counterions. To overcome energy barriers we used a combination of
parallel tempering and hybrid Monte Carlo techniques. Our results show that for
small values of the electrostatic interaction the solution mostly consists of
dispersed single rods. The potential of mean force between the polyelectrolyte
monomers yields an attractive interaction at short distances. For a range of
larger values of the Bjerrum length, we find finite size polyelectrolyte
bundles at thermodynamic equilibrium. Further increase of the Bjerrum length
eventually leads to phase separation and precipitation. We discuss the origin
of the observed thermodynamic stability of the finite size aggregates
Neutrino reactions on La and Ta via charged and neutral currents by the Quasi-particle Random Phase Approximation (QRPA)
Cosmological origins of the two heaviest odd-odd nuclei, La and
Ta, are believed to be closely related to the neutrino-process. We
investigate in detail neutrino-induced reactions on the nuclei. Charged current
(CC) reactions, BaLa and HfTa, are calculated by the standard Quasi-particle Random Phase
Approximation (QRPA) with neutron-proton pairing as well as neutron-neutron,
proton-proton pairing correlations. For neutral current (NC) reactions,
La{La} and TaTa, we generate ground and excited states of odd-even target nuclei,
La and Ta, by operating one quasi-particle to even-even nuclei,
Ba and Hf, which are assumed as the BCS ground state. Numerical
results for CC reactions are shown to be consistent with recent semi-empirical
data deduced from the Gamow-Teller strength distributions measured in the
(He, t) reaction. Results for NC reactions are estimated to be smaller by
a factor about 4 5 rather than those by CC reactions. Finally, cross
sections weighted by the incident neutrino flux in the core collapsing
supernova are presented for further applications to the network calculations
for relevant nuclear abundances
Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion
Making use of droplet epitaxy, we systematically controlled the height of
self-assembled GaAs quantum dots by more than one order of magnitude. The
photoluminescence spectra of single quantum dots revealed the strong dependence
of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm
showed broad spectral peaks with an average width as large as ~5 meV, but
shallow dots with a height of ~2 nm showed resolution-limited spectral lines
(<120 micro eV). The measured height dependence of the linewidths is in good
agreement with Stark coefficients calculated for the experimental shape
variation. We attribute the microscopic source of fluctuating electric fields
to the random motion of surface charges at the vacuum-semiconductor interface.
Our results offer guidelines for creating frequency-locked photon sources,
which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description
Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations
The effective elasticity of highly charged stiff polyelectrolytes is studied
in the presence of counterions, with and without added salt. The rigid polymer
conformations may become unstable due to an effective attraction induced by
counterion density fluctuations. Instabilities at the longest, or intermediate
length scales may signal collapse to globule, or necklace states, respectively.
In the presence of added-salt, a generalized electrostatic persistence length
is obtained, which has a nontrivial dependence on the Debye screening length.
It is also found that the onset of conformational instability is a re-entrant
phenomenon as a function of polyelectrolyte length for the unscreened case, and
the Debye length or salt concentration for the screened case. This may be
relevant in understanding the experimentally observed re-entrant condensation
of DNA.Comment: 8 pages, 4 figure
Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment
We report the performance of an active veto system using a liquid
scintillator with NaI(Tl) crystals for use in a dark matter search experiment.
When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags
48% of the internal K-40 background in the 0-10 keV energy region. We also
determined the tagging efficiency for events at 6-20 keV as 26.5 +/- 1.7% of
the total events, which corresponds to 0.76 +/- 0.04 events/keV/kg/day.
According to a simulation, approximately 60% of the background events from U,
Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0-10
keV. Full shielding with a 40-cm-thick liquid scintillator can increase the
tagging efficiency for both the internal K-40 and external background to
approximately 80%.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
Linear Superiorization for Infeasible Linear Programming
Linear superiorization (abbreviated: LinSup) considers linear programming
(LP) problems wherein the constraints as well as the objective function are
linear. It allows to steer the iterates of a feasibility-seeking iterative
process toward feasible points that have lower (not necessarily minimal) values
of the objective function than points that would have been reached by the same
feasiblity-seeking iterative process without superiorization. Using a
feasibility-seeking iterative process that converges even if the linear
feasible set is empty, LinSup generates an iterative sequence that converges to
a point that minimizes a proximity function which measures the linear
constraints violation. In addition, due to LinSup's repeated objective function
reduction steps such a point will most probably have a reduced objective
function value. We present an exploratory experimental result that illustrates
the behavior of LinSup on an infeasible LP problem.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0653
Singular Cucker-Smale Dynamics
The existing state of the art for singular models of flocking is overviewed,
starting from microscopic model of Cucker and Smale with singular communication
weight, through its mesoscopic mean-filed limit, up to the corresponding
macroscopic regime. For the microscopic Cucker-Smale (CS) model, the
collision-avoidance phenomenon is discussed, also in the presence of bonding
forces and the decentralized control. For the kinetic mean-field model, the
existence of global-in-time measure-valued solutions, with a special emphasis
on a weak atomic uniqueness of solutions is sketched. Ultimately, for the
macroscopic singular model, the summary of the existence results for the
Euler-type alignment system is provided, including existence of strong
solutions on one-dimensional torus, and the extension of this result to higher
dimensions upon restriction on the smallness of initial data. Additionally, the
pressureless Navier-Stokes-type system corresponding to particular choice of
alignment kernel is presented, and compared - analytically and numerically - to
the porous medium equation
- …