39,104 research outputs found

    Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium

    Full text link
    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates

    Neutrino reactions on 138^{138}La and 180^{180}Ta via charged and neutral currents by the Quasi-particle Random Phase Approximation (QRPA)

    Full text link
    Cosmological origins of the two heaviest odd-odd nuclei, 138^{138}La and 180^{180}Ta, are believed to be closely related to the neutrino-process. We investigate in detail neutrino-induced reactions on the nuclei. Charged current (CC) reactions, 138^{138}Ba(νe,e−)138 (\nu_e, e^{-}) ^{138}La and 180^{180}Hf(νe,e−)180 (\nu_e, e^{-}) ^{180}Ta, are calculated by the standard Quasi-particle Random Phase Approximation (QRPA) with neutron-proton pairing as well as neutron-neutron, proton-proton pairing correlations. For neutral current (NC) reactions, 139^{139}La(νν′)139 (\nu \nu^{'}) ^{139}{La}∗^* and 181^{181}Ta(ν,ν′)181 (\nu, \nu^{'}) ^{181}Ta∗^*, we generate ground and excited states of odd-even target nuclei, 139^{139}La and 181^{181}Ta, by operating one quasi-particle to even-even nuclei, 138^{138}Ba and 180^{180}Hf, which are assumed as the BCS ground state. Numerical results for CC reactions are shown to be consistent with recent semi-empirical data deduced from the Gamow-Teller strength distributions measured in the (3^{3}He, t) reaction. Results for NC reactions are estimated to be smaller by a factor about 4 ∼\sim 5 rather than those by CC reactions. Finally, cross sections weighted by the incident neutrino flux in the core collapsing supernova are presented for further applications to the network calculations for relevant nuclear abundances

    Size dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charges on spectral diffusion

    Get PDF
    Making use of droplet epitaxy, we systematically controlled the height of self-assembled GaAs quantum dots by more than one order of magnitude. The photoluminescence spectra of single quantum dots revealed the strong dependence of the spectral linewidth on the dot height. Tall dots with a height of ~30 nm showed broad spectral peaks with an average width as large as ~5 meV, but shallow dots with a height of ~2 nm showed resolution-limited spectral lines (<120 micro eV). The measured height dependence of the linewidths is in good agreement with Stark coefficients calculated for the experimental shape variation. We attribute the microscopic source of fluctuating electric fields to the random motion of surface charges at the vacuum-semiconductor interface. Our results offer guidelines for creating frequency-locked photon sources, which will serve as key devices for long-distance quantum key distribution.Comment: 6 pages, 6 figures; updated figs and their description

    Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a re-entrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed re-entrant condensation of DNA.Comment: 8 pages, 4 figure

    Linear Superiorization for Infeasible Linear Programming

    Full text link
    Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same feasiblity-seeking iterative process without superiorization. Using a feasibility-seeking iterative process that converges even if the linear feasible set is empty, LinSup generates an iterative sequence that converges to a point that minimizes a proximity function which measures the linear constraints violation. In addition, due to LinSup's repeated objective function reduction steps such a point will most probably have a reduced objective function value. We present an exploratory experimental result that illustrates the behavior of LinSup on an infeasible LP problem.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0653

    Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment

    Full text link
    We report the performance of an active veto system using a liquid scintillator with NaI(Tl) crystals for use in a dark matter search experiment. When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags 48% of the internal K-40 background in the 0-10 keV energy region. We also determined the tagging efficiency for events at 6-20 keV as 26.5 +/- 1.7% of the total events, which corresponds to 0.76 +/- 0.04 events/keV/kg/day. According to a simulation, approximately 60% of the background events from U, Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0-10 keV. Full shielding with a 40-cm-thick liquid scintillator can increase the tagging efficiency for both the internal K-40 and external background to approximately 80%.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Singular Cucker-Smale Dynamics

    Full text link
    The existing state of the art for singular models of flocking is overviewed, starting from microscopic model of Cucker and Smale with singular communication weight, through its mesoscopic mean-filed limit, up to the corresponding macroscopic regime. For the microscopic Cucker-Smale (CS) model, the collision-avoidance phenomenon is discussed, also in the presence of bonding forces and the decentralized control. For the kinetic mean-field model, the existence of global-in-time measure-valued solutions, with a special emphasis on a weak atomic uniqueness of solutions is sketched. Ultimately, for the macroscopic singular model, the summary of the existence results for the Euler-type alignment system is provided, including existence of strong solutions on one-dimensional torus, and the extension of this result to higher dimensions upon restriction on the smallness of initial data. Additionally, the pressureless Navier-Stokes-type system corresponding to particular choice of alignment kernel is presented, and compared - analytically and numerically - to the porous medium equation
    • …
    corecore